CSC321 Lecture 2: Linear Regression

Roger Grosse
Overview

- First learning algorithm of the course: **linear regression**
 - **Task**: predict scalar-valued targets, e.g. stock prices (hence “regression”)
 - **Architecture**: linear function of the inputs (hence “linear”)

Example of recurring themes throughout the course:
- choose an architecture and a loss function
- formulate an optimization problem
- solve the optimization problem using one of two strategies
 - direct solution (set derivatives to zero)
 - gradient descent
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- understand how well the model generalizes
First learning algorithm of the course: linear regression

- **Task:** predict scalar-valued targets, e.g. stock prices (hence “regression”)
- **Architecture:** linear function of the inputs (hence “linear”)

Example of recurring themes throughout the course:

- choose an **architecture** and a **loss function**
- formulate an **optimization problem**
- solve the optimization problem using one of two strategies
 - **direct solution** (set derivatives to zero)
 - **gradient descent**
- **vectorize** the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using **features**
- understand how well the model **generalizes**
Want to predict a scalar t as a function of a scalar x

Given a dataset of pairs $\{(x^{(i)}, t^{(i)})\}_{i=1}^N$

The $x^{(i)}$ are called inputs, and the $t^{(i)}$ are called targets.
Problem Setup

- **Model:** \(y \) is a linear function of \(x \):
 \[
 y = wx + b
 \]
- \(y \) is the prediction
- \(w \) is the weight
- \(b \) is the bias
- \(w \) and \(b \) together are the parameters
- Settings of the parameters are called hypotheses
Problem Setup

- **Loss function**: squared error

\[L(y, t) = \frac{1}{2}(y - t)^2 \]

- \(y - t \) is the residual, and we want to make this small in magnitude
- The \(\frac{1}{2} \) factor is just to make the calculations convenient.
Problem Setup

- **Loss function**: squared error
 \[\mathcal{L}(y, t) = \frac{1}{2} (y - t)^2 \]

- \(y - t \) is the residual, and we want to make this small in magnitude.
- The \(\frac{1}{2} \) factor is just to make the calculations convenient.

- **Cost function**: loss function averaged over all training examples
 \[E(w, b) = \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - t^{(i)} \right)^2 \]
 \[= \frac{1}{2N} \sum_{i=1}^{N} \left(wx^{(i)} + b - t^{(i)} \right)^2 \]
Problem Setup

![Graph showing residuals and plots with variables X and Y.](image-url)
Problem Setup

Surface plot vs. contour plot
Suppose we have multiple inputs x_1, \ldots, x_D. This is referred to as multivariable regression.

This is no different than the single input case, just harder to visualize.

Linear model:

$$y = \sum_j w_j x_j + b$$
Vectorization

Computing the prediction using a for loop:

```python
y = b
for j in range(M):
y += w[j] * x[j]
```

For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

\[
\mathbf{w} = (w_1, \ldots, w_D)^\top \quad \mathbf{x} = (x_1, \ldots, x_D)
\]

\[
y = \mathbf{w}^\top \mathbf{x} + b
\]

This is simpler and much faster:

```python
y = np.dot(w, x) + b
```
Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!

Vectorized code is much faster

Cut down on Python interpreter overhead

Use highly optimized linear algebra libraries

Matrix multiplication is very fast on a Graphics Processing Unit (GPU)
Vectorization

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
 - Cut down on Python interpreter overhead
 - Use highly optimized linear algebra libraries
 - Matrix multiplication is very fast on a Graphics Processing Unit (GPU)
Vectorization

- We can take this a step further. Organize all the training examples into a matrix X with one row per training example, and all the targets into a vector t.

$$X = \begin{pmatrix} x^{(1)\top} \\ x^{(2)\top} \\ x^{(3)\top} \end{pmatrix} = \begin{pmatrix} 8 & 0 & 3 & 0 \\ 6 & -1 & 5 & 3 \\ 2 & 5 & -2 & 8 \end{pmatrix}$$

- Computing the predictions for the whole dataset:

$$Xw + b1 = \begin{pmatrix} w\top x^{(1)} + b \\ \vdots \\ w\top x^{(N)} + b \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{pmatrix} = y$$
Vectorization

Computing the squared error cost across the whole dataset:

\[y = Xw + b1 \]

\[\mathcal{E} = \frac{1}{2N} \|y - t\|^2 \]

In Python:

```python
y = np.dot(X, w) + b
cost = np.sum((y - t) ** 2) / (2. * N)
```

Example in tutorial
Solving the optimization problem

- We defined a cost function. This is what we’d like to minimize.
- Recall from calculus class: minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.
- Multivariate generalization: set the partial derivatives to zero. We call this direct solution.
Direct solution

- **Partial derivatives**: derivatives of a multivariate function with respect to one of its arguments.

\[
\frac{\partial}{\partial x_1} f(x_1, x_2) = \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}
\]

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- **Example**: partial derivatives of the prediction \(y \)

\[
\frac{\partial y}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\sum_{j'} w_{j'} x_{j'} + b \right] = x_j
\]

\[
\frac{\partial y}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{j'} w_{j'} x_{j'} + b \right] = 1
\]
Chain rule for derivatives:

\[
\frac{\partial L}{\partial w_j} = \frac{dL}{dy} \frac{\partial y}{\partial w_j} = \frac{d}{dy} \left[\frac{1}{2} (y - t)^2 \right] \cdot x_j \\
= (y - t)x_j
\]

\[
\frac{\partial L}{\partial b} = y - t
\]

We will give a more precise statement of the Chain Rule in a few weeks. It’s actually pretty complicated.

Cost derivatives (average over data points):

\[
\frac{\partial E}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x_j^{(i)}
\]

\[
\frac{\partial E}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} - t^{(i)}
\]
Direct solution

- The minimum must occur at a point where the partial derivatives are zero.
 \[
 \frac{\partial \mathcal{E}}{\partial w_j} = 0 \quad \frac{\partial \mathcal{E}}{\partial b} = 0.
 \]

- If \(\frac{\partial \mathcal{E}}{\partial w_j} \neq 0 \), you could reduce the cost by changing \(w_j \).

- This turns out to give a system of linear equations, which we can solve efficiently. **Full derivation in tutorial and the readings.**

- Optimal weights:
 \[
 w = (X^\top X)^{-1} X^\top t
 \]

- Linear regression is one of only a handful of models in this course that permit direct solution.
Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.
Gradient descent

- Observe:
 - if $\frac{\partial \mathcal{E}}{\partial w_j} > 0$, then increasing w_j increases \mathcal{E}.
 - if $\frac{\partial \mathcal{E}}{\partial w_j} < 0$, then increasing w_j decreases \mathcal{E}.

- The following update decreases the cost function:

 $$w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{E}}{\partial w_j}$$

 $$= w_j - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x_j^{(i)}$$

- α is a learning rate. The larger it is, the faster w changes.
 - We’ll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001
Gradient descent

- This gets its name from the gradient:

\[
\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = \begin{pmatrix}
\frac{\partial \mathcal{E}}{\partial w_1} \\
\vdots \\
\frac{\partial \mathcal{E}}{\partial w_D}
\end{pmatrix}
\]

- This is the direction of fastest increase in \(\mathcal{E} \).
Gradient descent

- This gets its name from the gradient:

\[
\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = \begin{pmatrix}
\frac{\partial \mathcal{E}}{\partial w_1} \\
\vdots \\
\frac{\partial \mathcal{E}}{\partial w_D}
\end{pmatrix}
\]

- This is the direction of fastest increase in \(\mathcal{E} \).

- Update rule in vector form:

\[
\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \mathcal{E}}{\partial \mathbf{w}}
\]

\[
= \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y(i) - t(i)) \mathbf{x}^{(i)}
\]

- Hence, gradient descent updates the weights in the direction of fastest *decrease*.
Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
Gradient descent

- Why gradient descent, if we can find the optimum directly?
 - GD can be applied to a much broader set of models
 - GD can be easier to implement than direct solutions, especially with automatic differentiation software
 - For regression in high-dimensional spaces, GD is more efficient than direct solution (matrix inversion is an $O(D^3)$ algorithm).
Feature mappings

Suppose we want to model the following data

One option: fit a low-degree polynomial; this is known as polynomial regression

$$y = w_3 x^3 + w_2 x^2 + w_1 x + w_0$$

Do we need to derive a whole new algorithm?
Feature mappings

- We get polynomial regression for free!
- Define the feature map

\[\phi(x) = \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} \]

- Polynomial regression model:

\[y = w^\top \phi(x) \]

- All of the derivations and algorithms so far in this lecture remain exactly the same!
Fitting polynomials

\[y = w_0 \]

- Pattern Recognition and Machine Learning, Christopher Bishop.
Fitting polynomials

\[y = w_0 + w_1 x \]

Pattern Recognition and Machine Learning, Christopher Bishop.
Fitting polynomials

\[y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 \]

- Pattern Recognition and Machine Learning, Christopher Bishop.
Fitting polynomials

\[y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \ldots + w_9 x^9 \]

- Pattern Recognition and Machine Learning, Christopher Bishop.
Generalization

Underfitting : The model is too simple - does not fit the data.

![Graph showing underfitting](image)

Overfitting : The model is too complex - fits perfectly, does not generalize.

![Graph showing overfitting](image)
Generalization

- We would like our models to generalize to data they haven’t seen before.
- The degree of the polynomial is an example of a hyperparameter, something we can’t include in the training procedure itself.
- We can tune hyperparameters using a validation set:

```
train w/ degree 1  \rightarrow  err = 7.3  \times

train w/ degree 3  \rightarrow  err = 1.1 \rightarrow  test err = 1.2  \checkmark

train w/ degree 10 \rightarrow  err = 10.5 \times
```
Foreshadowing

- Feature maps aren’t a silver bullet:
 - It’s not always easy to pick good features.
 - In high dimensions, polynomial expansions can get very large!
- Until the last few years, a large fraction of the effort of building a good machine learning system was feature engineering
- We’ll see that neural networks are able to learn nonlinear functions directly, avoiding hand-engineering of features