CSC321 Lecture 2: Linear Regression J

Roger Grosse

CSC321 Lecture 2: Linear Regression 1/30



Overview

@ First learning algorithm of the course: linear regression

o Task: predict scalar-valued targets, e.g. stock prices (hence
“regression”)
e Architecture: linear function of the inputs (hence “linear")

CSC321 Lecture 2: Linear Regression 2 /30



Overview

@ First learning algorithm of the course: linear regression
o Task: predict scalar-valued targets, e.g. stock prices (hence
“regression”)
e Architecture: linear function of the inputs (hence “linear")

@ Example of recurring themes throughout the course:

e choose an architecture and a loss function
e formulate an optimization problem
e solve the optimization problem using one of two strategies
o direct solution (set derivatives to zero)
o gradient descent
e vectorize the algorithm, i.e. represent in terms of linear algebra
e make a linear model more powerful using features
e understand how well the model generalizes

CSC321 Lecture 2: Linear Regression 2 /30



|
Problem Setup

@ Want to predict a scalar t as a function of a scalar x
o Given a dataset of pairs {(x(), t())}N |

o The x() are called inputs, and the t() are called targets.

CSC321 Lecture 2: Linear Regression 3 /30



Problem Setup

Weight space

Data space

4.0 3.0

35 B 25

3.0 . R 2.0

Ve
25 P T
>20 2, /@/rn‘
s

15 o - 0.5

1.0 4\ 0.0

I

05 -0.5
00 1 2 3 4 5 o5

@ Model: y is a linear function of x:
y=wx+b
@ y is the prediction
@ w is the weight
@ b is the bias
@ w and b together are the parameters
@ Settings of the parameters are called hypotheses
CSC321 Lecture 2: Linear Regression

2.0

4 /30



|
Problem Setup

o Loss function: squared error

L0t = 50— 02

@ y — tis the residual, and we want to make this small in magnitude

@ The % factor is just to make the calculations convenient.

CSC321 Lecture 2: Linear Regression 5 /30



-
Problem Setup

o Loss function: squared error

L0t = 50— 02

@ y — tis the residual, and we want to make this small in magnitude

° The factor is just to make the calculations convenient.
o Cost functnon. loss function averaged over all training examples

(yU)__gn>2

(WX(i) +b— t(i))

1

E(w,b) = 2N -

1 2

2N 4

M=M=

1

CSC321 Lecture 2: Linear Regression 5 /30



|
Problem Setup

4.0
35 3
3.0 . .
. e
2.5 residuals I 2
>2.0 .,
>
. a 1
15
1.0 o
0.5
0.0 -1 T T T T
0 1 2 3 4 5 10 -05 00 05 10 15 2.0
X W

CSC321 Lecture 2: Linear Regression 6 /30



Problem Setup

Surface plot vs. contour plot

30,5
2018105 |
b "00gg,, 10

EEIIETEE

]

=

o

A

-1 T T T T +
-1.0 -05 0.0 0.5 10 15 2.0
w

Linear Regression 7 /30



Problem setup

@ Suppose we have multiple inputs xq,...,xp. This is referred to as
multivariable regression.

@ This is no different than the single input case, just harder to visualize.

@ Linear model:

y =) wxi+b
J

CSC321 Lecture 2: Linear Regression 8 /30



Vectorization

@ Computing the prediction using a for loop:
Yy =bh
for j in range(M):
y += wLil * x[i]
@ For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.
_ T _
w = (wi,...,wp) x = (x1,...,xD)
y = wix+b

@ This is simpler and much faster:
¥y = np.dot(w, XJ + b

CSC321 Lecture 2: Linear Regression 9 /30



Vectorization

Why vectorize?

CSC321 Lecture 2: Linear Regression 10 / 30



Vectorization

Why vectorize?
@ The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!
@ Vectorized code is much faster

e Cut down on Python interpreter overhead
o Use highly optimized linear algebra libraries
e Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

CSC321 Lecture 2: Linear Regression 10 / 30



Vectorization

@ We can take this a step further. Organize all the training examples
into a matrix X with one row per training example, and all the targets
into a vector t.

one feature across
all training examples

x(DT 8/10[ 3 0
— 2)T _ one training
X = |x® ={6/-1 5 3 example (vector)
x(3)T 2[5 —2 8
@ Computing the predictions for the whole dataset:
WTx(l) + b y(l)
WTx(N) + b y(N)
CSC321 Lecture 2: Linear Regression

11 /30



Vectorization

@ Computing the squared error cost across the whole dataset:
y = Xw + bl

€= 7Hy —t|?

@ In Python:

y = np.dot(X, w) + b
cost = Aap.sum({y - £) ** 2) / (2. * N)

e Example in tutorial

CSC321 Lecture 2: Linear Regression 12 / 30



Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

@ Multivariate generalization: set the partial derivatives to zero. We call
this direct solution.

CSC321 Lecture 2: Linear Regression 13 / 30



Direct solution

@ Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

B f(Xl + h, X2) — f(Xl, X2)
By | C102) = Jim, h

@ To compute, take the single variable derivatives, pretending the other
arguments are constant.
@ Example: partial derivatives of the prediction y

8y _
a\/\/] avvj |:Z,W/X/ :|
=%

P
=% [Z wjr Xjr + b]
j/

Il
—

CSC321 Lecture 2: Linear Regression 14 / 30



Direct solution

@ Chain rule for derivatives:

oL _dc oy
8W_, dy@w_,
d
- 0]
= -t
9L _ ¢
ob 7

@ We will give a more precise statement of the Chain Rule in a few

weeks. It's actually pretty complicated.
o Cost derivatives (average over data points):

Owj_iz(( -t
o 1 ;
%:Nzly()_t()

CSC321 Lecture 2: Linear Regression 15 / 30



Direct solution

@ The minimum must occur at a point where the partial derivatives are

zero.
o o oe_
ow; N ob

e If 9€/0w; # 0, you could reduce the cost by changing w;.

0.

@ This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in tutorial and the readings.

@ Optimal weights:
w=(X"X)"1xTt

@ Linear regression is one of only a handful of models in this course that
permit direct solution.

CSC321 Lecture 2: Linear Regression 16 / 30



Gradient Descent

@ Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

o Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

@ We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

CSC321 Lecture 2: Linear Regression 17 / 30



Gradient descent

@ Observe:
o if O£/0w; > 0, then increasing w; increases &£.
o if 0€/0w; < 0, then increasing w; decreases £.

@ The following update decreases the cost function:

e
ow;

o 0

1
YiT™N Z %j
@ « is a learning rate. The larger it is, the faster w changes.

o We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001

VVJ(—VVJ «

18 / 30

€SC321 Lecture 2: Linear Regression



Gradient descent

@ This gets its name from the gradient:

o0&

o
A
ow oe

8WD

o This is the direction of fastest increase in £.

CSC321 Lecture 2: Linear Regression 19 / 30



Gradient descent

@ This gets its name from the gradient:

o0&

o
A
ow oe

8WD

o This is the direction of fastest increase in £.

@ Update rule in vector form:

wew-—al
“ow
a N : : :

@ Hence, gradient descent updates the weights in the direction of
fastest decrease.

CSC321 Lecture 2: Linear Regression 19 / 30



Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/1lec/W01/linear_
regression.pdf#page=21

€SC321 Lecture 2: Linear Regression

20 / 30


http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21

Gradient descent

@ Why gradient descent, if we can find the optimum directly?
e GD can be applied to a much broader set of models
e GD can be easier to implement than direct solutions, especially with
automatic differentiation software
e For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).

CSC321 Lecture 2: Linear Regression 21 /30



Feature mappings

@ Suppose we want to model the following data

[e)

o\ ©O

-1

0 e 1

-Pattern Recognition and Machine Learning, Christopher Bishop.

@ One option: fit a low-degree polynomial; this is known as polynomial
regression
y = W3x3 + ng2 + wix + wy

@ Do we need to derive a whole new algorithm?

CSC321 Lecture 2: Linear Regression 22 /30



Feature mappings

@ We get polynomial regression for free!

@ Define the feature map

1
$(x) = | 22
X3
@ Polynomial regression model:
y=w'¢(x)

@ All of the derivations and algorithms so far in this lecture remain
exactly the same!

CSC321 Lecture 2: Linear Regression 23 /30



-
Fitting polynomials

Yy =w
1 M=0 -
o
t
o No o
O g
o
_1 4
0 1

-Pattern Recognition and Machine Learning, Christopher Bishop.

CSC321 Lecture 2: Linear Regression 24 / 30



-
Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.

CSC321 Lecture 2: Linear Regression 25 / 30



-
Fitting polynomials

Yy =wo+ wix + W2x2 + W3x3

-Pattern Recognition and Machine Learning, Christopher Bishop.

CSC321 Lecture 2: Linear Regression 26 / 30



-
Fitting polynomials

y:Wo—{—wlx—l—W2X2—|—W3x3+...—|—W9x9

-Pattern Recognition and Machine Learning, Christopher Bishop.

CSC321 Lecture 2: Linear Regression 27 / 30



Generalization

Underfitting : The model is too simple - does not fit the data.

1 00 M=0

0 . 1

-1

CSC321 Lecture 2: Linear Regression 28 / 30



Generalization

@ We would like our models to generalize to data they haven’t seen
before

@ The degree of the polynomial is an example of a hyperparameter,
something we can't include in the training procedure itself

@ We can tune hyperparameters using a validation set:

validation

set ’ test set

‘ training set ‘

‘ train w/ degree 1 ’—»‘ err=7.3 ‘ X
’ train w/ degree 3 ’—v‘ err=1.1 '\/—»
‘ train w/ degree 10 ’—»’ err=10.5 ‘ x

CSC321 Lecture 2: Linear Regression 29 / 30




Foreshadowing

@ Feature maps aren’t a silver bullet:

e It's not always easy to pick good features.
e In high dimensions, polynomial expansions can get very large!

@ Until the last few years, a large fraction of the effort of building a
good machine learning system was feature engineering

@ We'll see that neural networks are able to learn nonlinear functions
directly, avoiding hand-engineering of features

CSC321 Lecture 2: Linear Regression 30/ 30



