
CSC321 Lecture 2: Linear Regression

Roger Grosse

Roger Grosse CSC321 Lecture 2: Linear Regression 1 / 30



Overview

First learning algorithm of the course: linear regression

Task: predict scalar-valued targets, e.g. stock prices (hence
“regression”)
Architecture: linear function of the inputs (hence “linear”)

Example of recurring themes throughout the course:

choose an architecture and a loss function
formulate an optimization problem
solve the optimization problem using one of two strategies

direct solution (set derivatives to zero)
gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra
make a linear model more powerful using features
understand how well the model generalizes

Roger Grosse CSC321 Lecture 2: Linear Regression 2 / 30



Overview

First learning algorithm of the course: linear regression

Task: predict scalar-valued targets, e.g. stock prices (hence
“regression”)
Architecture: linear function of the inputs (hence “linear”)

Example of recurring themes throughout the course:

choose an architecture and a loss function
formulate an optimization problem
solve the optimization problem using one of two strategies

direct solution (set derivatives to zero)
gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra
make a linear model more powerful using features
understand how well the model generalizes

Roger Grosse CSC321 Lecture 2: Linear Regression 2 / 30



Problem Setup

Want to predict a scalar t as a function of a scalar x

Given a dataset of pairs {(x(i), t(i))}Ni=1

The x(i) are called inputs, and the t(i) are called targets.

Roger Grosse CSC321 Lecture 2: Linear Regression 3 / 30



Problem Setup

Model: y is a linear function of x :

y = wx + b

y is the prediction

w is the weight

b is the bias

w and b together are the parameters

Settings of the parameters are called hypotheses
Roger Grosse CSC321 Lecture 2: Linear Regression 4 / 30



Problem Setup

Loss function: squared error

L(y , t) =
1

2
(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

E(w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
wx (i) + b − t(i)

)2

Roger Grosse CSC321 Lecture 2: Linear Regression 5 / 30



Problem Setup

Loss function: squared error

L(y , t) =
1

2
(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

E(w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
wx (i) + b − t(i)

)2

Roger Grosse CSC321 Lecture 2: Linear Regression 5 / 30



Problem Setup

Roger Grosse CSC321 Lecture 2: Linear Regression 6 / 30



Problem Setup

Surface plot vs. contour plot

Roger Grosse CSC321 Lecture 2: Linear Regression 7 / 30



Problem setup

Suppose we have multiple inputs x1, . . . , xD . This is referred to as
multivariable regression.

This is no different than the single input case, just harder to visualize.

Linear model:
y =

∑
j

wjxj + b

Roger Grosse CSC321 Lecture 2: Linear Regression 8 / 30



Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.

w = (w1, . . . ,wD)> x = (x1, . . . , xD)

y = w>x + b

This is simpler and much faster:

Roger Grosse CSC321 Lecture 2: Linear Regression 9 / 30



Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!

Vectorized code is much faster

Cut down on Python interpreter overhead
Use highly optimized linear algebra libraries
Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Roger Grosse CSC321 Lecture 2: Linear Regression 10 / 30



Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!

Vectorized code is much faster

Cut down on Python interpreter overhead
Use highly optimized linear algebra libraries
Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Roger Grosse CSC321 Lecture 2: Linear Regression 10 / 30



Vectorization

We can take this a step further. Organize all the training examples
into a matrix X with one row per training example, and all the targets
into a vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

w>x(1) + b
...

w>x(N) + b

 =

y (1)

...

y (N)

 = y

Roger Grosse CSC321 Lecture 2: Linear Regression 11 / 30



Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

E =
1

2N
‖y − t‖2

In Python:

Example in tutorial

Roger Grosse CSC321 Lecture 2: Linear Regression 12 / 30



Solving the optimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

Multivariate generalization: set the partial derivatives to zero. We call
this direct solution.

Roger Grosse CSC321 Lecture 2: Linear Regression 13 / 30



Direct solution

Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

∂

∂x1
f (x1, x2) = lim

h→0

f (x1 + h, x2)− f (x1, x2)

h

To compute, take the single variable derivatives, pretending the other
arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′

wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′

wj′xj′ + b


= 1

Roger Grosse CSC321 Lecture 2: Linear Regression 14 / 30



Direct solution

Chain rule for derivatives:
∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj

∂L
∂b

= y − t

We will give a more precise statement of the Chain Rule in a few
weeks. It’s actually pretty complicated.
Cost derivatives (average over data points):

∂E
∂wj

=
1

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

∂E
∂b

=
1

N

N∑
i=1

y (i) − t(i)

Roger Grosse CSC321 Lecture 2: Linear Regression 15 / 30



Direct solution

The minimum must occur at a point where the partial derivatives are
zero.

∂E
∂wj

= 0
∂E
∂b

= 0.

If ∂E/∂wj 6= 0, you could reduce the cost by changing wj .

This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in tutorial and the readings.

Optimal weights:
w = (X>X)−1X>t

Linear regression is one of only a handful of models in this course that
permit direct solution.

Roger Grosse CSC321 Lecture 2: Linear Regression 16 / 30



Gradient Descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

Roger Grosse CSC321 Lecture 2: Linear Regression 17 / 30



Gradient descent

Observe:

if ∂E/∂wj > 0, then increasing wj increases E .
if ∂E/∂wj < 0, then increasing wj decreases E .

The following update decreases the cost function:

wj ← wj − α
∂E
∂wj

= wj −
α

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

α is a learning rate. The larger it is, the faster w changes.

We’ll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001

Roger Grosse CSC321 Lecture 2: Linear Regression 18 / 30



Gradient descent

This gets its name from the gradient:

∂E
∂w

=


∂E
∂w1

...
∂E
∂wD


This is the direction of fastest increase in E .

Update rule in vector form:

w← w − α ∂E
∂w

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

Roger Grosse CSC321 Lecture 2: Linear Regression 19 / 30



Gradient descent

This gets its name from the gradient:

∂E
∂w

=


∂E
∂w1

...
∂E
∂wD


This is the direction of fastest increase in E .

Update rule in vector form:

w← w − α ∂E
∂w

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

Roger Grosse CSC321 Lecture 2: Linear Regression 19 / 30



Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_

regression.pdf#page=21

Roger Grosse CSC321 Lecture 2: Linear Regression 20 / 30

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21


Gradient descent

Why gradient descent, if we can find the optimum directly?

GD can be applied to a much broader set of models
GD can be easier to implement than direct solutions, especially with
automatic differentiation software
For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).

Roger Grosse CSC321 Lecture 2: Linear Regression 21 / 30



Feature mappings

Suppose we want to model the following data

x

t

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

One option: fit a low-degree polynomial; this is known as polynomial
regression

y = w3x
3 + w2x

2 + w1x + w0

Do we need to derive a whole new algorithm?

Roger Grosse CSC321 Lecture 2: Linear Regression 22 / 30



Feature mappings

We get polynomial regression for free!

Define the feature map

φ(x) =


1
x
x2

x3


Polynomial regression model:

y = w>φ(x)

All of the derivations and algorithms so far in this lecture remain
exactly the same!

Roger Grosse CSC321 Lecture 2: Linear Regression 23 / 30



Fitting polynomials

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Roger Grosse CSC321 Lecture 2: Linear Regression 24 / 30



Fitting polynomials

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Roger Grosse CSC321 Lecture 2: Linear Regression 25 / 30



Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Roger Grosse CSC321 Lecture 2: Linear Regression 26 / 30



Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Roger Grosse CSC321 Lecture 2: Linear Regression 27 / 30



Generalization

Underfitting : The model is too simple - does not fit the data.

x

t

M = 0

0 1

−1

0

1

Overfitting : The model is too complex - fits perfectly, does not generalize.

x

t

M = 9

0 1

−1

0

1

Roger Grosse CSC321 Lecture 2: Linear Regression 28 / 30



Generalization

We would like our models to generalize to data they haven’t seen
before

The degree of the polynomial is an example of a hyperparameter,
something we can’t include in the training procedure itself

We can tune hyperparameters using a validation set:

Roger Grosse CSC321 Lecture 2: Linear Regression 29 / 30



Foreshadowing

Feature maps aren’t a silver bullet:

It’s not always easy to pick good features.
In high dimensions, polynomial expansions can get very large!

Until the last few years, a large fraction of the effort of building a
good machine learning system was feature engineering

We’ll see that neural networks are able to learn nonlinear functions
directly, avoiding hand-engineering of features

Roger Grosse CSC321 Lecture 2: Linear Regression 30 / 30


