CSC321 Lecture 1: Introduction

Roger Grosse
What is machine learning?

- For many problems, it’s difficult to program the correct behavior by hand
 - recognizing people and objects
 - understanding human speech
What is machine learning?

- For many problems, it’s difficult to program the correct behavior by hand
 - recognizing people and objects
 - understanding human speech
- Machine learning approach: program an algorithm to automatically learn from data, or from experience
What is machine learning?

- For many problems, it’s difficult to program the correct behavior by hand
 - recognizing people and objects
 - understanding human speech
- Machine learning approach: program an algorithm to automatically learn from data, or from experience
- Some reasons you might want to use a learning algorithm:
 - hard to code up a solution by hand (e.g. vision, speech)
 - system needs to adapt to a changing environment (e.g. spam detection)
 - want the system to perform better than the human programmers
 - privacy/fairness (e.g. ranking search results)
What is machine learning?

- It’s similar to statistics...
 - Both fields try to uncover patterns in data
 - Both fields draw heavily on calculus, probability, and linear algebra, and share many of the same core algorithms

Stats is more concerned with helping scientists and policymakers draw good conclusions; ML is more concerned with building autonomous agents. Stats puts more emphasis on interpretability and mathematical rigor; ML puts more emphasis on predictive performance, scalability, and autonomy.
What is machine learning?

- It’s similar to statistics...
 - Both fields try to uncover patterns in data
 - Both fields draw heavily on calculus, probability, and linear algebra, and share many of the same core algorithms

- But it’s not statistics!
 - Stats is more concerned with helping scientists and policymakers draw good conclusions; ML is more concerned with building autonomous agents
 - Stats puts more emphasis on interpretability and mathematical rigor; ML puts more emphasis on predictive performance, scalability, and autonomy
What is machine learning?

Types of machine learning

- **Supervised learning**: have labeled examples of the correct behavior
- **Reinforcement learning**: learning system receives a reward signal, tries to learn to maximize the reward signal
- **Unsupervised learning**: no labeled examples – instead, looking for interesting patterns in the data
Course information

- Course about machine learning, with a focus on neural networks
 - Independent of CSC411, and CSC412, with about 25% overlap in topics
 - First 2/3: supervised learning
 - Last 1/3: unsupervised learning and reinforcement learning

- Two sections
 - Equivalent content, same assignments and exams
 - Both sections are full, so please attend your own.
Course information

- **Formal prerequisites:**
 - **Calculus:** (MAT136H1 with a minimum mark of 77)/(MAT137Y1 with a minimum mark of 73)/(MAT157Y1 with a minimum mark of 67)/MAT235Y1/MAT237Y1/MAT257Y1
 - **Linear Algebra:** MAT221H1/MAT223H1/MAT240H1
 - **Probability:** STA247H1/STA255H1/STA257H1
 - **Multivariable calculus (recommended):** MAT235Y1/MAT237Y1/MAT257Y1
 - **Programming experience (recommended)**
Course information

- Expectations and marking
 - Written homeworks (20% of total mark)
 - Due Wednesday nights at 11:59pm, starting 1/17
 - 2-3 short conceptual questions
 - Use material covered up through Tuesday of the preceding week
 - 4 programming assignments (30% of total mark)
 - Python, PyTorch
 - 10-15 lines of code
 - May also involve some mathematical derivations
 - Give you a chance to experiment with the algorithms
- Exams
 - Midterm (15%)
 - Final (35%)
- See Course Information handout for detailed policies
Course information

- **Textbooks**
 - None, but we link to lots of free online resources. (see syllabus)
 - Professor Geoffrey Hinton’s Coursera lectures
 - the Deep Learning textbook by Goodfellow et al.
 - Metacademy
 - I will *try* to post detailed lecture notes, but I will not have time to cover every lecture.

- **Tutorials**
 - Roughly every week
 - Programming background; worked-through examples
Course information

Course web page:

Includes detailed course information handout
Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

- **Task:** given an image of a handwritten digit, predict the digit class
 - **Input:** the image
 - **Target:** the digit class

Data:
- 70,000 images of handwritten digits labeled by humans
- Training set: first 60,000 images, used to train the network
- Test set: last 10,000 images, not available during training, used to evaluate performance

This dataset is the “fruit fly” of neural net research

Neural nets already achieved >99% accuracy in the 1990s, but we still continue to learn a lot from it

Roger Grosse
Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

- **Task**: given an image of a handwritten digit, predict the digit class
 - **Input**: the image
 - **Target**: the digit class

- **Data**: 70,000 images of handwritten digits labeled by humans
 - **Training set**: first 60,000 images, used to train the network
 - **Test set**: last 10,000 images, not available during training, used to evaluate performance
Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

- **Task:** given an image of a handwritten digit, predict the digit class
 - **Input:** the image
 - **Target:** the digit class

- **Data:** 70,000 images of handwritten digits labeled by humans
 - **Training set:** first 60,000 images, used to train the network
 - **Test set:** last 10,000 images, not available during training, used to evaluate performance

- This dataset is the “fruit fly” of neural net research

- Neural nets already achieved > 99% accuracy in the 1990s, but we still continue to learn a lot from it
Supervised learning examples

What makes a “2”?
Supervised learning examples

Object recognition

![Images of quail, snowplow, and scabbard with bar charts showing recognition accuracy for various categories: otter, quail, ruffed grouse, partridge, snowplow, drilling platform, lifeboat, garbage truck, earthworm, guillotine, orangutan, and broom.](Krizhevsky and Hinton, 2012)

ImageNet dataset: thousands of categories, millions of labeled images

Lots of variability in viewpoint, lighting, etc.

Error rate dropped from 25.7% to 5.7% over the course of a few years!
Supervised learning examples

Caption generation

Given: dataset of Flickr images with captions
More examples at http://deeplearning.cs.toronto.edu/i2t

TAGS:
frisbees frisbee pushups golfers kickball

Nearest Neighbor Sentence:
• several people that are playing in a frisbee game.

Top-5 Generated:
• a group of girls are playing a game of frisbee.
• a group of girls are playing a soccer game.
• a group of girls playing on a soccer game.
• a group of people playing a game of frisbee.
• the young people are playing a game of frisbee.
Unsupervised learning examples

- In **generative modeling**, we want to learn a distribution over some dataset, such as natural images.
- We can evaluate a generative model by sampling from the model and seeing if it looks like the data.
- These results were considered impressive in 2014:

Denton et al., 2014, Deep generative image models using a Laplacian pyramid of adversarial networks
Unsupervised learning examples

- New state-of-the-art:
Unsupervised learning examples

- Recent exciting result: a model called the CycleGAN takes lots of images of one category (e.g. horses) and lots of images of another category (e.g. zebras) and learns to translate between them.

 ![Unsupervised learning examples](https://github.com/junyanz/CycleGAN)

- You will implement this model for Programming Assignment 4.
Reinforcement learning

- An **agent** interacts with an **environment** (e.g. game of Breakout)
- In each time step,
 - the agent receives **observations** (e.g. pixels) which give it information about the **state** (e.g. positions of the ball and paddle)
 - the agent picks an **action** (e.g. keystrokes) which affects the state
- The agent periodically receives a **reward** (e.g. points)
- The agent wants to learn a **policy**, or mapping from observations to actions, which maximizes its average reward over time
Reinforcement learning

DeepMind trained neural networks to play many different Atari games
- given the raw screen as input, plus the score as a reward
- single network architecture shared between all the games
- in many cases, the networks learned to play better than humans (in terms of points in the first minute)

https://www.youtube.com/watch?v=V1eYniJ0Rnk
What are neural networks?

- Most of the biological details aren’t essential, so we use vastly simplified models of neurons.
- While neural nets originally drew inspiration from the brain, nowadays we mostly think about math, statistics, etc.

Neural networks are collections of thousands (or millions) of these simple processing units that together perform useful computations.
What are neural networks?

Why neural nets?

- inspiration from the brain
 - proof of concept that a neural architecture can see and hear!
- very effective across a range of applications (vision, text, speech, medicine, robotics, etc.)
- widely used in both academia and the tech industry
- powerful software frameworks (Torch, PyTorch, TensorFlow, Theano) let us quickly implement sophisticated algorithms
Deep learning: many layers (stages) of processing

E.g. this network which recognizes objects in images:

Each of the boxes consists of many neuron-like units similar to the one on the previous slide!
“Deep learning”

- You can visualize what a learned feature is responding to by finding an image that excites it. (We’ll see how to do this.)
- Higher layers in the network often learn higher-level, more interpretable representations

https://distill.pub/2017/feature-visualization/
“Deep learning”

- You can visualize what a learned feature is responding to by finding an image that excites it.
- Higher layers in the network often learn higher-level, more interpretable representations

https://distill.pub/2017/feature-visualization/
Array processing (NumPy)
- **vectorize** computations (express them in terms of matrix/vector operations) to exploit hardware efficiency

Neural net frameworks: Torch, PyTorch, TensorFlow, Theano
- automatic differentiation
- compiling computation graphs
- libraries of algorithms and network primitives
- support for graphics processing units (GPUs)

For this course:
- Python, NumPy
- **Autograd**, a lightweight automatic differentiation package written by Professor David Duvenaud and colleagues
- **PyTorch**, a widely used neural net framework
Software frameworks

Why take this class, if PyTorch does so much for you?

So you know what do to if something goes wrong!

- Debugging learning algorithms requires sophisticated detective work, which requires understanding what goes on beneath the hood.
- That’s why we derive things by hand in this class!
Next time

Next lecture: linear regression