This is a closed-book test. It is marked out of 35 marks. Please answer ALL of the questions. Here is some advice:

- The questions are NOT arranged in order of difficulty, so you should attempt every question.

- Questions that ask you to “justify your answer” or “briefly explain” something only require short (1-3 sentence) explanations. Don’t write a full page of text. We’re just looking for the main idea.

- None of the questions require long derivations. If you find yourself plugging through lots of equations, consider giving less detail or moving on to the next question.

- Many questions have more than one right answer.
Final mark: ______ / 35
1. [2pts] Recall that multilayer perceptrons are universal for the set of functions mapping binary-valued input vectors to binary valued outputs.

 (a) [1pt] What do we mean by universal?

 (b) [1pt] If multilayer perceptrons are universal, why do we still consider other architectures?

2. [1pt] Give an example of a data augmentation technique that would be useful for classifying images of cats vs. dogs, but not for classifying handwritten digits. Briefly explain your answer.

3. [1pt] Suppose we have a grayscale image represented as an array, where larger values denote lighter pixels. What is the effect when we convolve it with the following kernel?

\[
\begin{pmatrix}
0 & -1 & 0 \\
-1 & -4 & -1 \\
0 & -1 & 0
\end{pmatrix}
\]
4. **2pts** The learning rate is an important parameter for gradient descent.

 (a) **1pt** Briefly describe something that can go wrong if we choose too high a learning rate for *full batch* gradient descent.

 (b) **1pt** Briefly describe something that can go wrong if we choose too high a learning rate for *stochastic* gradient descent, but is not a problem in the full batch setting.

5. **2pts** Suppose we are training an RNN language model using teacher forcing (the method you implemented in Assignment 3).

 (a) **1pt** What are the inputs to the network at training time?

 (b) **1pt** What are the inputs to the network at test time?
6. [1pt] Here is a modified version of code from Programming Assignment 2. The methods `downconv1`, `rfconv`, etc. implement convolution layers. Add edges to the diagram to represent the network architecture this implements. You don’t need to justify your answer.

```python
class MyNet(nn.Module):
    ...

def forward(self, x):
    self.h1 = self.downconv1(x)
    self.h2 = self.downconv2(self.h1)
    self.h3 = self.rfconv(self.h2)
    self.h4 = self.upconv1(torch.cat([self.h3, self.h2], 1))
    self.h5 = self.upconv2(self.h4)
    self.out = self.finalconv(torch.cat([self.h5, x], 1))
    return self.out
```

![Diagram of network architecture](image-url)
7. [3pts] Recall the (multivariate) linear regression model:

\[y = w^T x + b \]

\[\mathcal{L}(y, t) = \frac{1}{2} (y - t)^2 \]

Your job is to implement full batch gradient descent in NumPy. In particular, suppose we are given an \(N \times D \) NumPy array \(X \) representing all the training inputs, and an \(N \) dimensional NumPy vector \(t \) representing the targets, where \(N \) is the number of data points, and \(D \) is the input dimension. The weights are represented with a \(D \)-dimensional NumPy vector \(w \), and the biases are represented with a scalar \(b \). The learning rate is given as \(\alpha \).

Write NumPy code which implements one iteration of batch gradient descent. It should be vectorized, i.e. it should not involve a \texttt{for}-loop. You don’t need to show your work, but doing so may help you get partial credit.
8. **[2pts]** Suppose we have a convolution layer which takes as input an array \(\mathbf{x} = (x_1 \ x_2 \ x_3) \) and convolves \(\mathbf{x} \) with the kernel \((2 \ -1)\). This layer has a linear activation function. The output is an array of length 4.

Now let’s design a fully connected layer which computes the same function. It has a linear activation function and no bias, so it computes \(y = W \mathbf{x} \), where the output \(y \) is a vector of length 4. Give the \(4 \times 3 \) weight matrix \(W \) which makes this fully connected layer equivalent to the convolution layer above. You don’t need to justify your answer, but doing so may help you get partial credit.

Hint: first write the values of each output as a linear function of the inputs. To help you check your work, if \(\mathbf{x} = (1 \ 2 \ 3) \), your answer should give \(y = (2 \ 3 \ 4 \ -3) \).

9. **[1pt]** Briefly explain one flaw of encoder-decoder architectures for machine translation which do not use attention, and how attention can fix it.
10. [2pts] Recall that in order to add a new primitive operation to Autograd, you need to define a vector-Jacobian product (VJP). To refresh your memory, here is code which defines VJPs for exponentiation and multiplication.

```python
defvjp(exp, lambda g, ans, x: ans * g)
defvjp(multiply, lambda g, ans, x, y: y * g, lambda g, ans, x, y: x * g)
```

The arguments to `defvjp` are the primitive op, followed by functions implementing the VJPs for each of the arguments. The arguments to the VJP function are: the output gradient `g`, the output `ans` of the op, and the arguments fed to the op.

(a) [1pt] Write Python code that defines a vector-Jacobian product for `sin`.

(b) [1pt] Write Python code that defines a vector-Jacobian product for `divide`, the function which computes the elementwise division of two arrays (i.e. `divide(x, y)` is equivalent to `x / y`). (This is floating point division, not integer division.)
11. [4pts] Suppose we receive two binary sequences \(x_1 = (x_1^{(1)}, \ldots, x_1^{(T)}) \) and \(x_2 = (x_2^{(1)}, \ldots, x_2^{(T)}) \) of equal length, and we would like to design an RNN to determine if they are identical. We will use the following (rather unusual) architecture, drawn with self-loops on the left and unrolled on the right:

The computation in each time step is as follows:

\[
\begin{align*}
 h^{(t)} &= \phi \left(W x^{(t)} + b \right) \\
 y^{(t)} &= \begin{cases}
 \phi \left(v^\top h^{(t)} + r y^{(t-1)} + c \right) & \text{for } t > 1 \\
 \phi \left(v^\top h^{(t)} + c_0 \right) & \text{for } t = 1,
\end{cases}
\end{align*}
\]

where \(\phi \) denotes the hard threshold activation function

\[
\phi(z) = \begin{cases}
 1 & \text{if } z > 0 \\
 0 & \text{if } z \leq 0
\end{cases}
\]

The parameters are a \(2 \times 2 \) weight matrix \(W \), a 2-dimensional bias vector \(b \), a 2-dimensional weight vector \(v \), a scalar recurrent weight \(r \), a scalar bias \(c \) for all but the first time step, and a separate bias \(c_0 \) for the first time step.

We’ll use the following strategy. We’ll proceed one step at a time, and at time \(t \), the binary-valued elements \(x_1^{(t)} \) and \(x_2^{(t)} \) will be fed as inputs. The output unit \(y^{(t)} \) at time \(t \) will compute whether all pairs of elements have matched up to time \(t \). The two hidden units \(h_{1}^{(t)} \) and \(h_{2}^{(t)} \) will help determine if both inputs match at a given time step. **Hint:** have \(h_{1}^{(t)} \) determine if both inputs are 0, and \(h_{2}^{(t)} \) determine if both inputs are 1.
(Question 11, cont’d) Give parameters which correctly implement this function:

\[W = \]

\[b = \]

\[v = \]

\[r = \]

\[c = \]

\[c_0 = \]
12. [2pts] Suppose we have flipped a coin multiple times, and it came up heads N_H times and tails N_T times. We would like to model the coin as a Bernoulli random variable, and fit the model using maximum likelihood.

(a) [1pt] Give the formula for the log-likelihood $\ell(\theta)$, where θ is the probability of heads.

(b) [1pt] Solve for the maximum likelihood estimate of θ by setting $d\ell/d\theta = 0$.

(a) [1pt] What might go wrong if we eliminate the discriminator terms from the cost function?

(b) [1pt] What might go wrong if we eliminate the reconstruction terms from the cost function?
14. [2pts] Recall that a GAN could, in principle, be trained using the following minimax formulation, where G is the generator function, D is the probability the discriminator assigns to the sample being data, and J_D and J_G are the cost functions for the discriminator and generator, respectively.

\[
J_D = \mathbb{E}_{x \sim D}[- \log D(x)] + \mathbb{E}_z[- \log (1 - D(G(z)))]
\]

\[
J_G = - J_D
\]

\[
= \text{const} + \mathbb{E}_z[\log (1 - D(G(z)))]
\]

However, in practice, the generator is usually trained with a different loss function.

(a) [1pt] What cost function do we typically use for the generator?

(b) [1pt] What is the reason to use this cost function rather than the one given above?

15. [2pts] We’ve covered autoregressive generative models based on both convolutional networks and RNNs.

(a) [1pt] Give one advantage of using a convolutional network rather than an RNN.

(b) [1pt] Give one advantage of using an RNN rather than a convolutional network.
16. [3pts] Reversible architectures are based on a reversible block. Let’s modify the definition of the reversible block:

\[y_1 = r \circ x_1 + \mathcal{F}(x_2) \]
\[y_2 = s \circ x_2, \]

where \(\circ \) denotes elementwise multiplication. This modified block is identical to the ordinary reversible block, except that the inputs \(x_1 \) and \(x_2 \) are multiplied elementwise by vectors \(r \) and \(s \), all of whose entries are positive.

You don’t need to justify your answers for this question, but doing so may help you receive partial credit.

(a) [1pt] Give equations for inverting this block, i.e. computing \(x_1 \) and \(x_2 \) from \(y_1 \) and \(y_2 \). You may use \(/ \) to denote elementwise division.

(b) [1pt] Give a formula for the Jacobian \(\partial y / \partial x \), where \(y \) denotes the concatenation of \(y_1 \) and \(y_2 \).

(c) [1pt] Give a formula for the determinant of the Jacobian from part (b).
17. [2pts] Suppose we have an MDP with two time steps. It has an initial state distribution \(p(s_1) \), transition probabilities \(p(s_{t+1} \mid s_t, a_t) \), and deterministic reward function \(r(s, a) \). The agent is currently following a stochastic policy \(\pi_\theta(a \mid s) \) parameterized by \(\theta \).

(a) [1pt] Give the formula for the probability \(p(\tau) \) of a rollout \(\tau = (s_1, a_1, s_2, a_2) \).

(b) [1pt] What is the function that REINFORCE is trying to maximize with respect to \(\theta \)? (You can give your answer in terms of \(p(\tau) \).)

18. [1pt] Recall that the discounted return is defined as:

\[
G_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i},
\]

where \(\gamma \) is the discount factor and \(r_t \) is the reward at time \(t \). Give the definition of the action-value function \(Q^\pi(s, a) \) for policy \(\pi \), state \(s \), and action \(a \). You can either give an equation or explain it verbally.