
CSC321 Winter 2018 Programming Assignment 1

Programming Assignment 1: Learning Distributed Word Repre-
sentations

Due Date: Feb. 7, 2018
TA: Jing Yao Li (csc321staff@cs.toronto.edu)
Based on an assignment by George Dahl

Submission: You must submit two files through MarkUs1: a PDF file containing your writeup,
titled a1-writeup.pdf, and your code file language_model.py. Your writeup must be typeset
using LATEX.

The programming assignments are individual work. See the Course Information handout2 for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

Introduction

In this assignment we will make neural networks learn about words. One way to do this is to train
a network that takes a sequence of words as input and learns to predict the word that comes next.

This assignment will ask you to implement the backpropagation computations for a neural
language model and then run some experiments to analyze the learned representation. The amount
of code you have to write is very short — only about 5 lines — but each line will require you to
think very carefully. You will need to derive the updates mathematically, and then implement them
using matrix and vector operations in NumPy.

Part 0: Getting set up

The first step is to install Python and the required libraries. The directions are on the course web
site (http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/). That page also links to
some Python and NumPy tutorials, which you may wish to read before doing this assignment.

1https://markus.teach.cs.toronto.edu/csc321-2018-01
2http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/syllabus.pdf
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Part 1: Network architecture (2pts)

In this assignment, we will train a neural language model like the one we covered in lecture. It
receives as input 3 consecutive words, and its aim is to predict a distribution over the next word
(the target word). We train the model using the cross-entropy criterion, which is equivalent to
maximizing the probability it assigns to the targets in the training set. Hopefully it will also learn
to make sensible predictions for sequences it hasn’t seen before.

The model architecture is as follows:

The network consists of an input layer, embedding layer, hidden layer and output layer. The
input consists of a sequence of 3 consecutive words, given as integer valued indices. (I.e., the 250
words in our dictionary are arbitrarily assigned integer values from 0 to 249.) The embedding
layer maps each word to its corresponding vector representation. This layer has 3×D units, where
D is the embedding dimension, and it essentially functions as a lookup table. We share the same
lookup table between all 3 positions, i.e. we don’t learn a separate word embedding for each context
position. The embedding layer is connected to the hidden layer, which uses a logistic nonlinearity.
The hidden layer in turn is connected to the output layer. The output layer is a softmax over the
250 words.

As a warm-up, please answer the following questions, each worth 1 point out of 10.

1. As above, assume we have 250 words in the dictionary and use the previous 3 words as inputs.
Suppose we use a 16-dimensional word embedding and a hidden layer with 128 units. The
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trainable parameters of the model consist of 3 weight matrices and 2 sets of biases. What
is the total number of trainable parameters in the model? Which part of the model has the
largest number of trainable parameters?

2. Another method for predicting the next word is an n-gram model, which was mentioned in
Lecture 7. If we wanted to use an n-gram model with the same context length as our network,
we’d need to store the counts of all possible 4-grams. If we stored all the counts explicitly,
how many entries would this table have?

Starter code and data

Download and extract the archive from the course web page http://www.cs.toronto.edu/~rgrosse/
courses/csc321_2018/a1-code.zip.

Look at the file raw_sentences.txt. It contains the sentences that we will be using for this
assignment. These sentences are fairly simple ones and cover a vocabulary of only 250 words.

We have already extracted the 4-grams from this dataset and divided them into training, vali-
dation, and test sets. To inspect this data, run the following within IPython:

import cPickle

data = cPickle.load(open(’data.pk’, ’rb’))

Now data is a Python dict which contains the vocabulary, as well as the inputs and targets
for all three splits of the data. data[’vocab’] is a list of the 250 words in the dictionary;
data[’vocab’][0] is the word with index 0, and so on. data[’train_inputs’] is a 372, 500 × 3
matrix where each row gives the indices of the 3 context words for one of the 372, 500 training
cases. data[’train_targets’] is a vector giving the index of the target word for each training
case. The validation and test sets are handled analogously.

Now look at the file language_model.py, which contains the starter code for the assignment.
Even though you only have to modify two specific locations in the code, you may want to read
through this code before starting the assignment. There are three classes defined in this file:

• Params, a class which represents the trainable parameters of the network, i.e. all of the edges
in the above figure. This class has five fields:

– word_embedding_weights, a matrix of size NV ×D, where NV is the number of words
in the vocabulary and D is the embedding dimension.

– embed_to_hid_weights, a matrix of size NH × 3D, where NH is the number of hidden
units. The first D columns represent connections from the embedding of the first context
word, the next D columns for the second context word, and so on.

– hid_bias, a vector of length NH

– hid_to_output_weights, a matrix of size NV ×NH
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– output_bias, a vector of length NV

• Activations, a class which represents the activations of all the networks’s units (i.e. the
boxes in the above figure) on a batch of data. This has three fields:

– embedding_layer, a matrix of B × 3D matrix (where B is the batch size), representing
the activations for the embedding layer on all the cases in a batch. The first D columns
represent the embeddings for the first context word, and so on.

– hidden_layer, a B ×NH matrix representing the hidden layer activations for a batch

– output_layer, a B ×NV matrix representing the output layer activations for a batch

• Model, a class for the language model itself, which includes a lot of routines related to training
and making predictions. These methods will be discussed in later sections.

Part 2: Training the model (4pts)

In the first part of the assignment, you implement a method which computes the gradient using
backpropagation. To start you out, the Model class contains several important methods used in
training:

• compute_activations computes the activations of all units on a given input batch

• compute_loss computes the total cross-entropy loss on a mini-batch

• evaluate computes the average cross-entropy loss for a given set of inputs and targets

You will need to complete the implementation of two additional methods which are needed for
training:

• compute_loss_derivative computes the derivative of the loss function with respect to the
output layer inputs. In other words, if C is the cost function, and the softmax computation
is

yi =
ezi∑
j e

zj
,

this function should compute a B × NV matrix where the entries correspond to the partial
derivatives ∂C/∂zi.

• back_propagate is the function which computes the gradient of the loss with respect to model
parameters using backpropagation. It uses the derivatives computed by compute_loss_derivative.
Some parts are already filled in for you, but you need to compute the matrices of derivatives
for embed_to_hid_weights, hid_bias, hid_to_output_weights, and output_bias. These
matrices have the same sizes as the parameter matrices (see previous section).

4



CSC321 Winter 2018 Programming Assignment 1

In order to implement backpropagation efficiently, you need to express the computations in terms
of matrix operations, rather than for loops. You should first work through the derivatives on pencil
and paper. First, apply the chain rule to compute the derivatives with respect to individual units,
weights, and biases. Next, take the formulas you’ve derived, and express them in matrix form. You
should be able to express all of the required computations using only matrix multiplication, matrix
transpose, and elementwise operations — no for loops! If you want inspiration, read through the
code for Model.compute_activations and try to understand how the matrix operations correspond
to the computations performed by all the units in the network.

To make your life easier, we have provided the routine checking.check_gradients, which
checks your gradients using finite differences. You should make sure this check passes before
continuing with the assignment.

Once you’ve implemented the gradient computation, you’ll need to train the model. The func-
tion train in language_model.py implements the main training procedure. It takes two arguments:

• embedding_dim: The number of dimensions in the distributed representation.

• num_hid: The number of hidden units

For example, execute the following:

model = language_model.train(16, 128)

As the model trains, the script prints out some numbers that tell you how well the training is going.
It shows:

• The cross entropy on the last 100 mini-batches of the training set. This is shown after every
100 mini-batches.

• The cross entropy on the entire validation set every 1000 mini-batches of training.

At the end of training, this function shows the cross entropies on the training, validation and test
sets. It will return a Model instance.

To convince us that you have correctly implemented the gradient computations, please include
the following with your assignment submission:

• You will submit language_model.py through MarkUs. You do not need to modify any of
the code except the parts we asked you to implement.

• In your writeup, include the output of the function checking.print_gradients. This prints
out part of the gradients for a partially trained network which we have provided, and we
will check them against the correct outputs. Important: make sure to give the output of
checking.print_gradients, not checking.check_gradients.

This is worth 4 points: 1 for the loss derivatives, 1 for the bias gradients, and 2 for the weight
gradients. Since we gave you a gradient checker, you have no excuse for not getting full points on
this part.
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Part 3: Analysis (4pts)

In this part, you will analyze the representation learned by the network. You should first train a
model with a 16-dimensional embedding and 128 hidden units, as discussed in the previous section;
you’ll use this trained model for the remainder of this section. Important: if you’ve made any fixes
to your gradient code, you must reload the language_model module and then re-run the training
procedure. Python does not reload modules automatically, and you don’t want to accidentally
analyze an old version of your model.

These methods of the Model class can be used for analyzing the model after the training is
done.

• tsne_plot creates a 2-dimensional embedding of the distributed representation space using
an algorithm called t-SNE. (You don’t need to know what this is for the assignment, but we
may cover it later in the course.) Nearby points in this 2-D space are meant to correspond to
nearby points in the 16-D space. From the learned model, you can create pictures that look
like this:

• display_nearest_words lists the words whose embedding vectors are nearest to the given
word

• word_distance computes the distance between the embeddings of two words
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• predict_next_word shows the possible next words the model considers most likely, along
with their probabilities

Using these methods, please answer the following questions, each of which is worth 1 point.

1. Pick three words from the vocabulary that go well together (for example, ‘government of united’,
‘city of new’, ‘life in the’, ‘he is the’ etc.). Use the model to predict the next word.
Does the model give sensible predictions? Try to find an example where it makes a plausible
prediction even though the 4-gram wasn’t present in the dataset (raw_sentences.txt). To
help you out, the function language_model.find_occurrences lists the words that appear
after a given 3-gram in the training set.

2. Plot the 2-dimensional visualization using the method Model.tsne_plot. Look at the plot
and find a few clusters of related words. What do the words in each cluster have in common?
(You don’t need to include the plot with your submission.)

3. Are the words ‘new’ and ‘york’ close together in the learned representation? Why or why
not?

4. Which pair of words is closer together in the learned representation: (‘government’, ‘political’),
or (‘government’, ‘university’)? Why do you think this is?

What you have to submit

For reference, here is everything you need to hand in. See the top of this handout for submission
directions.

• A PDF file titled a1-writeup.pdf containing the following:

– Both questions from Part 1

– The output of checking.print_gradients()

– Answers to all four questions from Part 3

– Optional: Which part of this assignment did you find the most valuable? The most
difficult and/or frustrating?

• Your code file language_model.py

This assignment is graded out of 10 points: 2 for Part 1, 4 for Part 2, and 4 for Part 3.
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