ConvNets & Multi-modal Log-bilinear Language Model

Renjie Liao
2017.Feb.14

Some materials are credited to Jamie Kiros
Motivation – ConvNets are everywhere!

(Krizhevsky et al, 2012)
Motivation – ConvNets are everywhere!

Face recognition (Taigman et al, 2014)

Action recognition from video (Simonyan et al, 2014)
Motivation – ConvNets are everywhere!

- Street sign recognition (Sermanet et al, 2011)
- Galaxy classification (Dieleman et al, 2014)
- Mitosis detection (Ciresan et al, 2013)
Motivation – ConvNets are everywhere!

Playing Atari games (Mnih et al, 2013)

- Many, many more applications (and not only vision):
 - Object detection
 - Image segmentation
 - Pose estimation
 - Image captioning
 - Pedestrian detection
 - Semantic image search
 - Extractive summarization
 - Sentiment analysis of text
A brief review

Fully connected:
(unique weights across all pairs of neurons)

Main operation:
Matrix Multiply

Convnet:
(neurons are volumes, weights are shared)

Main operation:
Convolution
Some terminology

Channels (e.g. 3 for RGB image)

Kernel (or filter)
5 in this example

Each “slice” across depth is a feature map

(think of this just like an image, but with 5 channels instead)
1D forward pass, strides, padding

- Weight sharing: the kernel is scanned across the input (as opposed to fully connected networks)

- Larger strides reduce computation cost, but usually at the expense of accuracy

- In this example, each side is “padded” with an extra 0
Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.

\[
\begin{array}{c}
\begin{array}{c}
(4 \times 0) \\
(0 \times 1) \\
(0 \times 1) \\
(0 \times 1) \\
(0 \times 1) \\
+ \ (-4 \times 2) \\
-8
\end{array}
\end{array}
\]
2D Convolution Example
Example #1

- Input: 32 x 32 x 3 image
- 5 Filters, each 5 x 5
- Stride of 1
- No padding

- What is the output volume?
- How many parameters are there?
Example #1

- Input: 32 x 32 x 3 image
- 5 Filters, each 5 x 5
- Stride of 1
- No padding

- What is the output volume?
 28 x 28 x 5
- How many parameters are there?
 ((5 x 5) x 3) x 5 = 375
Example #2

- Input: 32 x 32 x 3 image
- 5 Filters, each 5 x 5
- Stride of 3
- No padding

- What is the output volume?
- How many parameters are there?
Example #2

- Input: 32 x 32 x 3 image
- 5 Filters, each 5 x 5
- Stride of 3
- No padding

- What is the output volume? 10 x 10 x 5
- How many parameters are there? \((5 \times 5) \times 3 \times 5 = 375\)
GENERATING TEXT CONDITIONED ON IMAGES

In this picture there is another grey pavement on the right; three grey clouds and a blue sky in the background; the houses and on the left before it; a dark green, wooded slopes behind it; grey clouds in a light blue sky in the background; snow covered mountains.

This product contains a slip resistant and mesh upper is fully designed for breathable durability. The detachable leather footbed is the high, they feature a lady - like footbed that light sophistication and flirty tear silhouette to glam up your feet, style to help your thing. With traditional support.
The Log-Bilinear Language Model (LBL)

- Word representations r_{w_i}, context matrices C_i
- Predicted next word representation $\hat{r} = \sum_{i=1}^{n-1} C_i r_{w_i}$
- R: matrix where each row is a word feature from the vocabulary
- Score \hat{r} with each word and normalize:

$$P(w_n = w | w_1:n-1) = \frac{\exp(\hat{r}^T r_w + b_w)}{\sum_j \exp(\hat{r}^T r_j + b_j)}$$

- Backprop through both parameters and word embeddings
Suppose we have image features \mathbf{x}

- Simplest approach: Bias the predicted next word representation:

$$\hat{\mathbf{r}} = \left(\sum_{i=1}^{n-1} C_i r_{w_i} \right) + C_m \mathbf{x}$$

- This turns out to be a surprisingly effective model (given good image features)