1. Automatic Differentiation
2. Introduction to Autograd
3. IPython Notebook Demo
To solve a problem using machine learning you generally need to:

1. Define a *model* f_θ governed by parameters θ
2. Come up with a *loss function* \mathcal{L} that quantifies how well your model fits the data
3. *Optimize* the loss function with respect to the parameters θ

- To optimize \mathcal{L} w.r.t θ, we need to find the *gradient* $\nabla_\theta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \theta}$
• **Symbolic differentiation**: Automatic manipulation of mathematical expressions to get derivatives
 • Input and output are mathematical expressions
 • Used in Mathematica, Maple, Sympy, etc.

• **Numeric differentiation**: Approximating derivatives by finite differences:

\[
\frac{\partial}{\partial x_i} f(x_1, \ldots, x_N) = \lim_{h \to 0} \frac{f(x_1, \ldots, x_i + h, \ldots, x_N) - f(x_1, \ldots, x_i - h, \ldots, x_N)}{2h}
\]

• **Automatic differentiation (AD)**: A method to get exact derivatives efficiently, by storing information as you go forward that you can reuse as you go backwards
 • Takes code that computes a function and returns code that computes the derivative of that function.
 • “The goal isn’t to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.”
 • **Autograd, Torch Autograd**
Automatic differentiation is a set of abstractions that enable you to write a function and efficiently apply the chain rule to it.

Main Idea:

1. All numeric computations are compositions of a finite set of elementary operations (+, -, *, /, exp, log, sin, cos, etc.)
2. We can write code to differentiate these basic operations.
3. When we encounter a complicated function we break it down and deal with those basic ops as opposed to finding the gradient of the entire computation.
• **Autograd** is a Python package for automatic differentiation
• To install Autograd:

  ```
  pip install autograd
  ```
• Autograd can automatically differentiate Python and Numpy code
• It can handle most of Python’s features, including loops, if statements, recursion and closures
• It can also compute higher-order derivatives
• Uses reverse-mode differentiation (backpropagation) so it can efficiently take gradients of scalar-valued functions with respect to array-valued or vector-valued arguments.
Thinly wrapped numpy
import autograd.numpy as np

Basically everything you need
from autograd import grad

Define a function like normal with Python and Numpy
def tanh(x):
 y = np.exp(-x)
 return (1.0 - y) / (1.0 + y)

Create a function to compute the gradient
grad_tanh = grad(tanh)

Evaluate the gradient at x = 1.0
print(grad_tanh(1.0))
Taylor approximation to sin function

def fun(x):
 currterm = x
 ans = currterm
 for i in range(1000):
 print(i, end=' ')
 currterm = - currterm * x ** 2 /
 ((2 * i + 3) * (2 * i + 2))
 ans = ans + currterm
 if np.abs(currterm) < 0.2:
 break

 return ans

d_fun = grad(fun)
dd_fun = grad(d_fun) # Second-order gradient
• Autograd allows you to compute gradients of many types of data structures
 • Any nested combination of lists, tuples, arrays, or dicts
• The `flatten` function converts data structures to 1-D vectors
 • We know how to compute gradients of vectors
 • To compute gradients of more complicated structures, convert the structures to vectors, perform computations, and then convert back to the original data structure
• Provides a lot of flexibility in how you store and manipulate the parameters of your model
There are several reasons you might want to do this, including:

1. **Speed**: You may know a faster way to compute the gradient for a specific function.
2. **Numerical Stability**
3. When your code depends on **external library calls**

```python
from autograd import primitive
@primitive
def logsumexp(x):
    return ...

# Define a custom gradient function
def make_grad_logsumexp(ans, x):
    def gradient_product(g):
        return ...
    return gradient_product

# Tell autograd about the custom gradient function
logsumexp.defgrad(make_grad_logsumexp)
```
• Two approaches to automatic differentiation: \textit{explicit} vs \textit{implicit} computational graph construction.
• Various tools implement limited forms of automatic differentiation using mini-languages
• Many deep learning packages involve \textit{explicit graph construction}, including:
 • Theano
 • Caffe
 • Vanilla Torch (as compared to Autograd for Torch)
 • Tensorflow
• On the other hand, Autograd implicitly constructs a computational graph by tracking operations
IPYTHON NOTEBOOK EXAMPLE