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TUTORIAL OUTLINE

1. Automatic Differentiation
2. Introduction to Autograd
3. IPython Notebook Demo



MOTIVATION

To solve a problem using machine learning you generally need to:

1. Define a model fy governed by parameters 6
2. Come up with a loss function £ that quantifies how well your model fits

the data
3. Optimize the loss function with respect to the parameters

- To optimize £ w.rt 6, we need to find the gradient VoL = %



APPROACHES TO COMPUTING GRADIENTS

- Symbolic differentiation: Automatic manipulation of mathematical
expressions to get derivatives

- Input and output are mathematical expressions
- Used in Mathematica, Maple, Sympy, etc.

- Numeric differentiation: Approximating derivatives by finite differences:
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- Automatic differentiation (AD): A method to get exact derivatives
efficiently, by storing information as you go forward that you can reuse
as you go backwards

- Takes code that computes a function and returns code that computes the
derivative of that function.

- “The goal isn't to obtain closed-form solutions, but to be able to write a
program that efficiently computes the derivatives.”

- Autograd, Torch Autograd


https://github.com/HIPS/autograd
https://github.com/twitter/torch-autograd

IDEA BEHIND AUTOMATIC DIFFERENTIATION (AD)

- Automatic differentiation is a set of abstractions that enable you to
write a function and efficiently apply the chain rule to it

Main ldea:

1. All numeric computations are compositions of a finite set of elementary
operations (+, -, *, /, exp, log, sin, cos, etc.)

2. We can write code to differentiate these basic operations

3. When we encounter a complicated function we break it down and deal
with those basic ops as opposed to finding the gradient of the entire
computation.



AUTOGRAD

- Autograd is a Python package for automatic differentiation
- To install Autograd:

pip install autograd

- Autograd can automatically differentiate Python and Numpy code

- It can handle most of Python's features, including loops, if statements,
recursion and closures

- It can also compute higher-order derivatives

- Uses reverse-mode differentiation (backpropagation) so it can
efficiently take gradients of scalar-valued functions with respect to
array-valued or vector-valued arguments.



AUTOGRAD: AUTOMATIC DIFFERENTIATION IN PYTHON

# Thinly wrapped numpy
import autograd.numpy as np

# Basically everything you need
from autograd import grad

# Define a function like normal with Python and Numpy
def tanh(x):

y = np.exp(-x)

return (1.0 - y) / (1.0 + y)

# Create a function to compute the gradient
grad_tanh = grad(tanh)

# Evaluate the gradient at x = 1.0
print(grad_tanh(1.0))



A MORE COMPLICATED EXAMPLE

# Taylor approximation to sin function
def fun(x):
currterm = X
ans = currterm
for i in range(1000):
print(i, end=" ")
currterm = - currterm x x *% 2 /
((2 1 +3) %= (2=*1+2))
ans = ans + currterm
if np.abs(currterm) < 0.2:
break

return ans

d_fun = grad(fun)
dd_fun = grad(d_fun) # Second-order gradient



GRADIENTS OF DATA STRUCTURES

- Autograd allows you to compute gradients of many types of data
structures

- Any nested combination of lists, tuples, arrays, or dicts

- The flatten function converts data structures to 1-D vectors

- We know how to compute gradients of vectors

- To compute gradients of more complicated structures, convert the
structures to vectors, perform computations, and then convert back to the
original data structure

- Provides a lot of flexibility in how you store and manipulate the
parameters of your model



MODULARITY: IMPLEMENTING CUSTOM GRADIENTS

There are several reasons you might want to do this, including:

1. Speed: You may know a faster way to compute the gradient for a
specific function.

2. Numerical Stability

3. When your code depends on external library calls

from autograd import primitive
aprimitive
def logsumexp(x):

return

# Define a custom gradient function
def make_grad_logsumexp(ans, x):
def gradient_product(g):
return
return gradient_product

# Tell autograd about the custom gradient function
logsumexp.defgrad(make_grad_logsumexp) 10



OTHER AUTOMATIC DIFFERENTIATION TOOLS

- Two approaches to automatic differentiation: explicit vs implicit
computational graph construction.
- Various tools implement limited forms of automatic differentiation
using mini-languages
- Many deep learning packages involve explicit graph construction,
including:
- Theano
- Caffe

- Vanilla Torch (as compared to Autograd for Torch)
- Tensorflow

- On the other hand, Autograd implicitly constructs a computational
graph by tracking operations

- Review paper: Baydin, Pearlmutter, Radul & Siskind “Automatic
Differentiation in Machine Learning: A Survey”
http://arxiv.org/abs/1502.05767


http://arxiv.org/abs/1502.05767

IPYTHON NOTEBOOK EXAMPLE




	iPython Notebook Example

