AUTOGRAD TUTORIAL

Paul Vicol, Slides Based on Ryan Adams'
January 30, 2017

CSC 321, University of Toronto



TUTORIAL OUTLINE

1. Automatic Differentiation
2. Introduction to Autograd
3. IPython Notebook Demo



MOTIVATION

To solve a problem using machine learning you generally need to:

1. Define a model fy governed by parameters 6
2. Come up with a loss function £ that quantifies how well your model fits

the data
3. Optimize the loss function with respect to the parameters

- To optimize £ w.rt 6, we need to find the gradient VoL = %



APPROACHES TO COMPUTING GRADIENTS

- Symbolic differentiation: Automatic manipulation of mathematical
expressions to get derivatives

- Input and output are mathematical expressions
- Used in Mathematica, Maple, Sympy, etc.

- Numeric differentiation: Approximating derivatives by finite differences:

0 o s xihy X)) = [, — o X)
% (X“""XN)_MHO oh

- Automatic differentiation (AD): A method to get exact derivatives
efficiently, by storing information as you go forward that you can reuse
as you go backwards

- Takes code that computes a function and returns code that computes the
derivative of that function.

- “The goal isn't to obtain closed-form solutions, but to be able to write a
program that efficiently computes the derivatives.”

- Autograd, Torch Autograd


https://github.com/HIPS/autograd
https://github.com/twitter/torch-autograd

IDEA BEHIND AUTOMATIC DIFFERENTIATION (AD)

- Automatic differentiation is a set of abstractions that enable you to
write a function and efficiently apply the chain rule to it

Main ldea:

1. All numeric computations are compositions of a finite set of elementary
operations (+, -, *, /, exp, log, sin, cos, etc.)

2. We can write code to differentiate these basic operations

3. When we encounter a complicated function we break it down and deal
with those basic ops as opposed to finding the gradient of the entire
computation.



AUTOGRAD

- Autograd is a Python package for automatic differentiation
- To install Autograd:

pip install autograd

- Autograd can automatically differentiate Python and Numpy code

- It can handle most of Python's features, including loops, if statements,
recursion and closures

- It can also compute higher-order derivatives

- Uses reverse-mode differentiation (backpropagation) so it can
efficiently take gradients of scalar-valued functions with respect to
array-valued or vector-valued arguments.



AUTOGRAD: AUTOMATIC DIFFERENTIATION IN PYTHON

# Thinly wrapped numpy
import autograd.numpy as np

# Basically everything you need
from autograd import grad

# Define a function like normal with Python and Numpy
def tanh(x):

y = np.exp(-x)

return (1.0 - y) / (1.0 + y)

# Create a function to compute the gradient
grad_tanh = grad(tanh)

# Evaluate the gradient at x = 1.0
print(grad_tanh(1.0))



A MORE COMPLICATED EXAMPLE

# Taylor approximation to sin function
def fun(x):
currterm = X
ans = currterm
for i in range(1000):
print(i, end=" ")
currterm = - currterm x x *% 2 /
((2 1 +3) %= (2=*1+2))
ans = ans + currterm
if np.abs(currterm) < 0.2:
break

return ans

d_fun = grad(fun)
dd_fun = grad(d_fun) # Second-order gradient



GRADIENTS OF DATA STRUCTURES

- Autograd allows you to compute gradients of many types of data
structures

- Any nested combination of lists, tuples, arrays, or dicts

- The flatten function converts data structures to 1-D vectors

- We know how to compute gradients of vectors

- To compute gradients of more complicated structures, convert the
structures to vectors, perform computations, and then convert back to the
original data structure

- Provides a lot of flexibility in how you store and manipulate the
parameters of your model



MODULARITY: IMPLEMENTING CUSTOM GRADIENTS

There are several reasons you might want to do this, including:

1. Speed: You may know a faster way to compute the gradient for a
specific function.

2. Numerical Stability

3. When your code depends on external library calls

from autograd import primitive
aprimitive
def logsumexp(x):

return

# Define a custom gradient function
def make_grad_logsumexp(ans, x):
def gradient_product(g):
return
return gradient_product

# Tell autograd about the custom gradient function
logsumexp.defgrad(make_grad_logsumexp) 10



OTHER AUTOMATIC DIFFERENTIATION TOOLS

- Two approaches to automatic differentiation: explicit vs implicit
computational graph construction.
- Various tools implement limited forms of automatic differentiation
using mini-languages
- Many deep learning packages involve explicit graph construction,
including:
- Theano
- Caffe

- Vanilla Torch (as compared to Autograd for Torch)
- Tensorflow

- On the other hand, Autograd implicitly constructs a computational
graph by tracking operations

- Review paper: Baydin, Pearlmutter, Radul & Siskind “Automatic
Differentiation in Machine Learning: A Survey”
http://arxiv.org/abs/1502.05767


http://arxiv.org/abs/1502.05767

IPYTHON NOTEBOOK EXAMPLE




	iPython Notebook Example

