1 Tutorial: Classification

In [1]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

1.1 Classification with Iris

We’re going to use the Iris dataset.
We will only work with the first 2 flower classes (Setosa and Versicolour), and with just the first two features: length and width of the sepal.
If you don’t know what the sepal is, see this diagram: https://www.math.umd.edu/~petersd/666/html/iris_with_labels.jpg

In [2]:
from sklearn.datasets import load_iris
iris = load_iris()
print iris['DESCR']

Iris Plants Database

Notes

Data Set Characteristics:
: Number of Instances: 150 (50 in each of three classes)
: Number of Attributes: 4 numeric, predictive attributes and the class
: Attribute Information:
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - class:
 - Iris-Setosa
 - Iris-Versicolour
 - Iris-Virginica
:Summary Statistics:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>Class Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>sepal length</td>
<td>4.3</td>
<td>7.9</td>
<td>5.84</td>
<td>0.83</td>
<td>0.7826</td>
</tr>
<tr>
<td>sepal width</td>
<td>2.0</td>
<td>4.4</td>
<td>3.05</td>
<td>0.43</td>
<td>-0.4194</td>
</tr>
<tr>
<td>petal length</td>
<td>1.0</td>
<td>6.9</td>
<td>3.76</td>
<td>1.76</td>
<td>0.9490 (high!)</td>
</tr>
<tr>
<td>petal width</td>
<td>0.1</td>
<td>2.5</td>
<td>1.20</td>
<td>0.76</td>
<td>0.9565 (high!)</td>
</tr>
</tbody>
</table>

:Missing Attribute Values: None

:Class Distribution: 33.3% for each of 3 classes.

:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

:Date: July, 1988

This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

References

- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II conceptual clustering system finds 3 classes in the data.
- Many, many more ...

In [4]: # code from
from pandas.tools.plotting import scatter_matrix
import pandas as pd

iris_data = pd.DataFrame(data=iris['data'], columns=iris['feature_names'])
iris_data['target'] = iris['target']

color_wheel = {1: '#0392cf',
 2: '#7bc043',
 3: '#ee4035'}

colors = iris_data['target'].map(lambda x: color_wheel.get(x + 1))

ax = scatter_matrix(iris_data, color=colors, alpha=0.6, figsize=(15, 15), diagonal='hist')

In [5]: # Select first 2 flower classes (~100 rows)
 # And first 2 features
sepal_len = iris['data'][::100,0]
sepal_wid = iris['data'][::100,1]
labels = iris['target'][::100]

We will also center the data
This is done to make numbers nice, so that we have no
need for biases in our classification. (You might not
be able to remove biases this way in general.)

sepal_len -= np.mean(sepal_len)
sepal_wid -= np.mean(sepal_wid)

In [6]: # Plot Iris

plt.scatter(sepal_len,
 sepal_wid,
 c=labels,
 cmap=plt.cm.Paired)
plt.xlabel("sepal length")
plt.ylabel("sepal width")

Out[6]: <matplotlib.text.Text at 0x10ec88f50>
1.1.1 Plotting Decision Boundary

Plot decision boundary hypothesis

\[w_1 x_1 + w_2 x_2 \geq 0 \]

for classification as Setosa.

In [7]: def plot_sep(w1, w2, color='green'):

 '''
 Plot decision boundary hypothesis
 \(w_1 \cdot \text{sepal_len} + w_2 \cdot \text{sepal_wid} = 0 \)
 in input space, highlighting the hyperplane
 '''
 plt.scatter(sepal_len,
 sepal_wid,
 c=labels,
 cmap=plt.cm.Paired)
 plt.title("Separation in Input Space")
 plt.ylim([-1.5, 1.5])
 plt.xlim([-1.5, 2.0])
 plt.xlabel("sepal length")
 plt.ylabel("sepal width")
 if w2 != 0:
 m = -w1/w2
 t = 1 if w2 > 0 else -1
 plt.plot([-1.5, 2.0],
 [-1.5*m, 2.0*m],
 '-y',
 color=color)
 plt.fill_between([-1.5, 2.0],
 [m*-1.5, m*2.0],
 [t*1.5, t*1.5],
 alpha=0.2,
 color=color)
 if w2 == 0: # decision boundary is vertical
 t = 1 if w1 > 0 else -1
 plt.plot([0, 0],
 [-1.5, 2.0],
 '-y',
 color=color)
 plt.fill_between([0, 2.0*t],
 [-1.5, -2.0],
 [1.5, 2],
 alpha=0.2,
 color=color)
In [8]: # Example hypothesis
 # sepal_wid >= 0
 plot_sep(0, 1)

In [9]: # Another example hypothesis:
 # -0.5*sepal_len + 1*sepal_wid >= 0
 plot_sep(-0.5, 1)
In [10]: # We're going to hand pick one point and
 # analyze that point:

 a1 = sepal_len[41]
 a2 = sepal_wid[41]
 print (a1, a2) # (-0.97, -0.79)

 plot_sep(-0.5, 1)
 plt.plot(a1, a2, 'ob') # highlight the point

(-0.9710000000000097, -0.7940000000000004)

Out[10]: [<matplotlib.lines.Line2D at 0x10cee6cd0>]

7
1.1.2 Plot Constraints in Weight Space

We’ll plot the constraints for some of the points that we chose earlier.

In [11]: def plot_weight_space(sepal_len, sepal_wid, lab=1, color='steelblue',
 maxlim=2.0):
 plt.title("Constraint(s) in Weight Space")
 plt.ylim([-maxlim,maxlim])
 plt.xlim([-maxlim,maxlim])
 plt.xlabel("w1")
 plt.ylabel("w2")

 if sepal_wid != 0:
 m = -sepal_len/sepal_wid
 t = 1*lab if sepal_wid > 0 else -1*lab
 plt.plot([-maxlim, maxlim],
 [-maxlim*m, maxlim*m],
 '-y',
 color=color)
 plt.fill_between([[-maxlim, maxlim], # x
 [m*-maxlim, m*maxlim]], # y-min
...
if sepal_wid == 0: # decision boundary is vertical
t = 1*lab
if sepal_len > 0
else -1*lab
plt.plot([0, 0],
[-maxlim, maxlim],
'y',
color=color)
plt.fill_between(
[0, 2.0*t],
[-maxlim, -maxlim],
[maxlim, maxlim],
alpha=0.2,
color=color)

In [12]: # Plot the constraint for the point identified earlier:

 a1 = sepal_len[41]
 a2 = sepal_wid[41]
 print (a1, a2)
 # Do this on the board first by hand
 plot_weight_space(a1, a2, lab=1)

 # Below is the hypothesis we plotted earlier
 # Notice it falls outside the range.
 plt.plot(-0.5, 1, 'og')

(-0.9710000000000097, -0.7940000000000004)

Out[12]: [<matplotlib.lines.Line2D at 0x10e928fd0>]

9
1.1.3 Perceptron Learning Rule Example

We’ll take one step using the perceptron learning rule

In [20]: # Using the perceptron learning rule
 # TODO: Fill in

 w1 = -0.5 # + ...
 w2 = 1 # + ...

In [21]: # This should bring the point closer to the boundary
 # In this case, the step brought the point into the
 # condition boundary
 plot_weight_space(a1, a2, lab=1)
 plt.plot(-0.5+a1, 1+a2, 'og')
 # old hypothesis
 plt.plot(-0.5, 1, 'og')
 plt.plot([-0.5, -0.5+a1], [1, 1+a2], '-g')

 plt.axes().set_aspect('equal', 'box')
In [22]: # Which means that the point \((a_1, a_2)\) in input
space is correctly classified.

plot_sep(-0.5+a1, 1+a2)
1.1.4 Visualizing Multiple Constraints

We'll visualize multiple constraints in weight space.

In [23]: # Pick a second point
 b1 = sepal_len[84]
b2 = sepal_wid[84]

 plot_sep(-0.5+a1, 1+a2)
plt.plot(b1, b2, 'or') # plot the circle in red

Out[23]: [<matplotlib.lines.Line2D at 0x10cc68ed0>]

12
In [24]: # our weights fall outside constraint of second pt.

 plot_weight_space(a1, a2, lab=1, color='blue')
 plot_weight_space(b1, b2, lab=-1, color='red')
 plt.plot(w1, w2, 'ob')

Out[24]: [<matplotlib.lines.Line2D at 0x10dc8a4d0>]

In [25]: # Example of a separating hyperplane
 plot_weight_space(a1, a2, lab=1, color='blue')
 plot_weight_space(b1, b2, lab=-1, color='red')
 plt.plot(-1, 1, 'ok')
 plt.show()
 plot_sep(-1, 1)
 plt.show()
1.2 Perceptron Convergence Proof:

(From Geoffrey Hinton’s slides 2d)

Hopeful claim: Every time the perceptron makes a mistake, the learning algo moves the current weight vector closer to all feasible weight vectors

BUT: weight vector may not get close to feasible vector in the boundary

In [26]: # The feasible region is inside the intersection of these two regions:
plot_weight_space(a1, a2, lab=1, color='blue')
#plot_weight_space(b1, b2, lab=-1, color='red')

This is a vector in the feasible region.
plt.plot(-0.3, 0.3, 'ok')

We started with this point
plt.plot(-0.5, 1, 'og')

And ended up here
plt.plot(-0.5+a1, 1+a2, 'or')

Notice that red point is further away to black than the green
plt.axes().set_aspect('equal', 'box')
• So consider “generously feasible” weight vectors that lie within the feasible region by a margin at least as great as the length of the input vector that defines each constraint plane.
• Every time the perceptron makes a mistake, the squared distance to all of these generously feasible weight vectors is always decreased by at least the squared length of the update vector.

In [27]: plot_weight_space(a1, a2, lab=1, color='blue', maxlim=15)
 plot_weight_space(b1, b2, lab=-1, color='red', maxlim=15)

 # We started with this point
 plt.plot(-0.5, 1, 'og')
 plt.plot(-0.5+a1, 1+a2, 'or')
 plt.axes().set_aspect('equal', 'box')

 # red is closer to "generously feasible" vectors on the top left

1.2.1 Inform Sketch of Proof of Convergence
• Each time the perceptron makes a mistake, the current weight vector moves to decrease its squared distance from every weight vector in the “generously feasible” region.
• The squared distance decreases by at least the squared length of the input vector.
• So after a finite number of mistakes, the weight vector must lie in the feasible region if this region exists.
1.3 Gradient Descent for Multiclass Logistic Regression

Multiclass logistic regression:

$$z = Wx + b$$ \hspace{1cm} (1)
$$y = \text{softmax}(z)$$ \hspace{1cm} (2)
$$L_{CE} = -t^T \log y$$ \hspace{1cm} (3)

Draw out the shapes on the board before continuing.

In [28]: # Aside: lots of functions work on vectors

 print np.log([1.5,2,3])
 print np.exp([1.5,2,3])

 [0.40546511 0.69314718 1.09861229]
 [4.48168907 7.3890561 20.08553692]

Start by expanding the cross entropy loss so that we can work with it

$$L_{CE} = - \sum_l t_l \log(y_l)$$

1.3.1 Main setup

We’ll take the derivative with respect to the loss:

$$\frac{\partial L_{CE}}{\partial w_{kj}} = \frac{\partial}{\partial w_{kj}} \left(- \sum_l t_l \log(y_l) \right)$$ \hspace{1cm} (4)
$$= - \sum_l t_l \frac{\partial y_l}{y_l} \frac{\partial y_l}{\partial w_{kj}}$$ \hspace{1cm} (5)

Normally in calculus we have the rule:

$$\frac{\partial y_l}{\partial w_{kj}} = \sum_m \frac{\partial y_l}{\partial z_m} \frac{\partial z_m}{\partial w_{kj}}$$ \hspace{1cm} (6)

But w_{kj} is independent of z_m for $m \neq k$, so

$$\frac{\partial y_l}{\partial w_{kj}} = \frac{\partial y_l}{\partial z_k} \frac{\partial z_k}{\partial w_{kj}}$$ \hspace{1cm} (7)

AND

$$\frac{\partial z_k}{\partial w_{kj}} = x_j$$
Thus

\[
\frac{\partial \mathcal{L}_{CE}}{\partial w_{kj}} = - \sum_l t_l \frac{\partial y_l}{\partial z_k} \frac{\partial z_k}{\partial w_{kj}}
\]

\[= - \sum_l t_l \frac{\partial y_l}{\partial z_k} x_j \quad \text{(8)}
\]
\[= x_j \left(- \sum_l t_l \frac{\partial y_l}{\partial z_k} \right) \quad \text{(9)}
\]
\[= x_j \frac{\partial \mathcal{L}_{CE}}{\partial z_k} \quad \text{(11)}
\]

1.3.2 Derivative with respect to \(z_k\)

But we can show (on board) that

\[
\frac{\partial y_l}{\partial z_k} = y_k (I_{k,l} - y_l)
\]

Where \(I_{k,l} = 1\) if \(k = l\) and 0 otherwise.

Therefore

\[
\frac{\partial \mathcal{L}_{CE}}{\partial z_k} = - \sum_l t_l (y_k (I_{k,l} - y_l))
\]

\[= - \frac{t_k}{y_k} y_k (1 - y_k) - \sum_{l \neq k} t_l (-y_k y_l) \quad \text{(12)}
\]
\[= - t_k (1 - y_k) + \sum_{l \neq k} t_l y_k \quad \text{(13)}
\]
\[= - t_k + t_k y_k + \sum_{l \neq k} t_l y_k \quad \text{(14)}
\]
\[= - t_k + \sum_{l} t_l y_k \quad \text{(15)}
\]
\[= - t_k + y_k \sum_{l} t_l \quad \text{(16)}
\]
\[= - t_k + y_k \quad \text{(17)}
\]
\[= y_k - t_k \quad \text{(18)}
\]

1.3.3 Putting it all together

\[
\frac{\partial \mathcal{L}_{CE}}{\partial w_{kj}} = x_j (y_k - t_k)
\]

\[\text{(20)}\]
1.3.4 Vectorization

Outer product.

\[
\frac{\partial L_{CE}}{\partial W} = (y - t)x^T \tag{21}
\]
\[
\frac{\partial L_{CE}}{\partial b} = (y - t) \tag{22}
\]

In [29]: def softmax(x):
 #return np.exp(x) / np.sum(np.exp(x))
 return np.exp(x - max(x)) / np.sum(np.exp(x - max(x)))

In [30]: x1 = np.array([1,3,3])
softmax(x1)
Out[30]: array([0.06337894, 0.46831053, 0.46831053])

In [31]: x2 = np.array([1000,3000,3000])
softmax(x2)
Out[31]: array([0., 0.5, 0.5])

In [32]: def gradient(W, b, x, t):
 '''
 Gradient update for a single data point.
 returns dW and db
 This is meant to show how to implement the
 obtained equation in code. (not tested)
 '''
 z = np.matmul(W, x) + b
 y = softmax(z)
 dW = np.matmul(x, (y-t).T)
 db = (y-t)
 return dW, db

In []: