Tutorial 1. Linear Regression

January 11, 2017

1 Tutorial: Linear Regression

In [1]:
 import matplotlib
 import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

In [2]:
 from sklearn.datasets import load_boston
 boston_data = load_boston()
 print(boston_data['DESCR'])

Boston House Prices dataset

Notes

Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive

:Median Value (attribute 14) is usually the target

:Attribute Information (in order):
 - CRIM per capita crime rate by town
 - ZN proportion of residential land zoned for lots over 25,000 sq.ft.
 - INDUS proportion of non-retail business acres per town
 - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
 - NOX nitric oxides concentration (parts per 10 million)
 - RM average number of rooms per dwelling
 - AGE proportion of owner-occupied units built prior to 1940
 - DIS weighted distances to five Boston employment centres
 - RAD index of accessibility to radial highways
 - TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)'^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's

Missing Attribute Values: None

Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.
http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data has been used in many machine learning papers that address regression problems.

References
- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

In [3]: # take the boston data
data = boston_data['data']
we will only work with two of the features: INDUS and RM
x_input = data[:, [2,5]]
y_target = boston_data['target']

In [5]: # Individual plots for the two features:
plt.title('Industrialness vs Med House Price')
plt.scatter(x_input[:, 0], y_target)
plt.xlabel('Industrialness')
plt.ylabel('Med House Price')
plt.show()

plt.title('Avg Num Rooms vs Med House Price')
plt.scatter(x_input[:, 1], y_target)
plt.xlabel('Avg Num Rooms')
plt.show()
plt.ylabel('Med House Price')
plt.show()
1.1 Define cost function

\[E(y, t) = \frac{1}{2N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)})^2 \]

\[E(y, t) = \frac{1}{2N} \sum_{i=1}^{N} (w_1 x_1^{(i)} + w_2 x_2^{(i)} + b - t^{(i)})^2 \]

In [6]: def cost(w1, w2, b, X, t):

 """
 Evaluate the cost function in a non-vectorized manner for inputs 'X' and targets 't', at weights 'w1', 'w2' and 'b'.
 """
 costs = 0
 for i in range(len(t)):
 y_i = w1 * X[i, 0] + w2 * X[i, 1] + b
 t_i = t[i]
 costs += 0.5 * (y_i - t_i) ** 2
 return costs / len(t)

In [7]: cost(3, 5, 20, x_input, y_target)
Out[7]: 2241.1239166749006

In [8]: cost(3, 5, 0, x_input, y_target)
Out[8]: 1195.1098850543478

1.2 Vectorizing the cost function:

\[E(y, t) = \frac{1}{2N} \| Xw + b - t \|^2 \]

In [9]: def cost_vectorized(w1, w2, b, X, t):

 """
 Evaluate the cost function in a vectorized manner for inputs 'X' and targets 't', at weights 'w1', 'w2' and 'b'.
 """
 N = len(y_target)
 w = np.array([w1, w2])
 y = np.dot(X, w) + b * np.ones(N)
 return np.sum((y - t)**2) / (2.0 * N)

In [10]: cost_vectorized(3, 5, 20, x_input, y_target)
Out[10]: 2241.1239166749015

In [11]: cost(3, 5, 0, x_input, y_target)
Out[11]: 1195.1098850543478
1.3 Comparing speed of the vectorized vs unvectorized code

We’ll see below that the vectorized code already runs ~2x faster than the non-vectorized code!
Hopefully this will convince you to always vectorized your code whenever possible.

In [12]: import time

 t0 = time.time()
 print cost(4, 5, 20, x_input, y_target)
 t1 = time.time()
 print t1 - t0

 3182.40634167
 0.00229597091675

In [13]: t0 = time.time()

 print cost_vectorized(4, 5, 20, x_input, y_target)
 t1 = time.time()
 print t1 - t0

 3182.40634167
 0.000537872314453

1.4 Plotting cost in weight space

We'll plot the cost for two of our weights, assuming that bias = -22.89831573.
We’ll see where that number comes from later.
Notice the shape of the contours are ovals.

In [15]: w1s = np.arange(-1.0, 0.0, 0.01)
 w2s = np.arange(6.0, 10.0, 0.1)
 z_cost = []
 for w2 in w2s:
 z_cost.append([cost_vectorized(w1, w2, -22.89831573, x_input, y_target)
 for w1 in w1s])
 z_cost = np.array(z_cost)
 np.shape(z_cost)
 W1, W2 = np.meshgrid(w1s, w2s)
 CS = plt.contour(W1, W2, z_cost, 25)
 plt.clabel(CS, inline=1, fontsize=10)
 plt.title('Costs for various values of w1 and w2 for b=0')
 plt.xlabel("w1")
 plt.ylabel("w2")
 plt.plot([-0.33471389], [7.82205511], 'o') # this will be the minima that
2 Exact Solution

Work this out on the board:

1. ignore biases (add an extra feature & weight instead)
2. get equations from partial derivative
3. vectorize
4. write code.

In [16]: # add an extra feature (column in the input) that are just all ones
 x_in = np.concatenate([x_input, np.ones([np.shape(x_input)[0], 1])], axis=x_in

Out[16]: array([[2.31, 6.575, 1.],
 [7.07, 6.421, 1.],
 [7.07, 7.185, 1.],
 ...
 [11.93, 6.976, 1.],
 [11.93, 6.794, 1.],
 [11.93, 6.03 , 1.]])

In [17]: def solve_exactly(X, t):
 ...
Solve linear regression exactly. (fully vectorized)

Given `X` - NxD matrix of inputs
`t` - target outputs
Returns the optimal weights as a D-dimensional vector

```
N, D = np.shape(X)
A = np.matmul(X.T, X)
c = np.dot(X.T, t)
return np.matmul(np.linalg.inv(A), c)
```

In [18]: solve_exactly(x_in, y_target)
Out[18]: array([-0.33471389, 7.82205511, -22.89831573])

In [19]: # In real life we don't want to code it directly
np.linalg.lstsq(x_in, y_target)
Out[19]: (array([-0.33471389, 7.82205511, -22.89831573]),
array([19807.614505]),
3,
array([318.75354429, 75.21961717, 2.10127199]))

2.1 Implement Gradient Function

\[
\frac{\partial E}{\partial w_j} = \frac{1}{N} \sum_i x_j^{(i)}(y^{(i)} - t^{(i)})
\]

In [20]: # Vectorized gradient function
 def gradfn(weights, X, t):
 ...
 Given `weights` - a current "Guess" of what our weights should be
 `X` - matrix of shape (N,D) of input features
 `t` - target y values
 Return gradient of each weight evaluated at the current value
 ...
 N, D = np.shape(X)
y_pred = np.matmul(X, weights)
error = y_pred - t
return np.matmul(np.transpose(x_in), error) / float(N)

In [23]: def solve_via_gradient_descent(X, t, print_every=5000,
 niter=100000, alpha=0.005):
 ...
 Given `X` - matrix of shape (N,D) of input features
 `t` - target y values
 Solves for linear regression weights.
 Return weights after `niter` iterations.
 ...
N, D = np.shape(X)
initialize all the weights to zeros
w = np.zeros([D])
for k in range(niter):
 dw = gradfn(w, X, t)
 w = w - alpha*dw
 if k % print_every == 0:
 print 'Weight after %d iteration: %s' % (k, str(w))
return w

In [24]: solve_via_gradient_descent(X=x_in, t=y_target)

Weight after 0 iteration: [1.10241186 0.73047508 0.11266403]
Weight after 5000 iteration: [-0.48304613 5.10076868 -3.97899253]
Weight after 10000 iteration: [-0.45397323 5.63413678 -7.6871518]
Weight after 15000 iteration: [-0.41180532 6.40774447 -13.06553969]
Weight after 20000 iteration: [-0.39669551 6.68494726 -14.9927492]
Weight after 25000 iteration: [-0.38454721 6.90781871 -16.5422851]
Weight after 30000 iteration: [-0.36692706 7.23107589 -18.78962409]
Weight after 35000 iteration: [-0.35061333 7.34690694 -19.5942155]
Weight after 40000 iteration: [-0.34553614 7.62351125 -21.51797024]
Weight after 45000 iteration: [-0.34033844 7.71886763 -22.18092072]
Weight after 50000 iteration: [-0.33706425 7.77893565 -22.59853432]

Out[24]: array([-0.33706425, 7.77893565, -22.59853432])

In [25]: # For comparison, this was the exact result:
np.linalg.lstsq(x_in, y_target)

Out[25]: (array([-0.33471389, 7.82205511, -22.89831573]),
 array([19807.614505]),
 3,
 array([318.75354429, 75.21961717, 2.10127199]))