CSC321 Lecture 4: Learning a Classifier

Roger Grosse
Overview

- Last time: binary classification, perceptron algorithm
- Limitations of the perceptron
 - no guarantees if data aren’t linearly separable
 - how to generalize to multiple classes?
 - linear model — no obvious generalization to multilayer neural networks
- This lecture: apply the strategy we used for linear regression
 - define a model and a cost function
 - optimize it using gradient descent
Overview

Design choices so far

- **Task**: regression, binary classification, multiway classification
- **Model/Architecture**: linear, log-linear
- **Loss function**: squared error, 0–1 loss, cross-entropy, hinge loss
- **Optimization algorithm**: direct solution, gradient descent, perceptron
• Recall: binary linear classifiers. Targets $t \in \{0, 1\}$

$$z = w^T x + b$$

$$y = \begin{cases}
1 & \text{if } z \geq 0 \\
0 & \text{if } z < 0
\end{cases}$$

• Goal from last lecture: classify all training examples correctly
 • But what if we can’t, or don’t want to?

• Seemingly obvious loss function: 0-1 loss

$$\mathcal{L}_{0-1}(y, t) = \begin{cases}
0 & \text{if } y = t \\
1 & \text{if } y \neq t
\end{cases} = \mathbb{1}_{y \neq t}.$$
Attempt 1: 0-1 loss

As always, the cost \mathcal{E} is the average loss over training examples; for 0-1 loss, this is the error rate:

$$\mathcal{E} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{y(i) \neq t(i)}$$

$$\frac{1}{3} \left(\begin{array}{c}
\text{●} \\
\text{□} \\
\text{▌}
\end{array} \right) + \begin{array}{c}
\text{□} \\
\text{▌} \\
\text{□}
\end{array} + \begin{array}{c}
\text{▌} \\
\text{▌} \\
\text{▌}
\end{array} = \begin{array}{c}
\text{▌} \\
\text{▌} \\
\text{▌}
\end{array}$$
Attempt 1: 0-1 loss

- Problem: how to optimize?
- Chain rule:

\[
\frac{\partial L_{0-1}}{\partial w_j} = \frac{\partial L_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}
\]
Attempt 1: 0-1 loss

- Problem: how to optimize?
- Chain rule:
 \[
 \frac{\partial L_{0-1}}{\partial w_j} = \frac{\partial L_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}
 \]

- But $\partial L_{0-1}/\partial z$ is zero everywhere it’s defined!
 - $\partial L_{0-1}/\partial w_j = 0$ means that changing the weights by a very small amount probably has no effect on the loss.
 - The gradient descent update is a no-op.
Sometimes we can replace the loss function we care about with one which is easier to optimize. This is known as a surrogate loss function. We already know how to fit a linear regression model. Can we use this instead?

\[y = \mathbf{w}^\top \mathbf{x} + b \]

\[\mathcal{L}_{\text{SE}}(y, t) = \frac{1}{2} (y - t)^2 \]

 Doesn’t matter that the targets are actually binary.

 Threshold predictions at \(y = 1/2 \).
 Attempt 2: Linear Regression

The problem:

- The loss function hates when you make correct predictions with high confidence!
Attempt 3: Logistic Activation Function

- There's obviously no reason to predict values outside $[0, 1]$. Let's squash y into this interval.

- The logistic function is a kind of sigmoidal, or S-shaped, function:

 $$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- A linear model with a logistic nonlinearity is known as log-linear:

 $$z = w^\top x + b$$
 $$y = \sigma(z)$$
 $$\mathcal{L}_{SE}(y, t) = \frac{1}{2}(y - t)^2.$$

- Used in this way, σ is called an activation function.
Attempt 3: Logistic Activation Function

The problem:
(plot of \mathcal{L}_{SE} as a function of z)

\[\frac{\partial L}{\partial w_j} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial w_j} \]

In gradient descent, a small gradient (in magnitude) implies a small step. If the prediction is really wrong, shouldn't you take a large step?
Attempt 3: Logistic Activation Function

The problem:
(plot of \mathcal{L}_{SE} as a function of z)

\[
\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_j}
\]

\[w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{L}}{\partial w_j}\]

- In gradient descent, a small gradient (in magnitude) implies a small step.
- If the prediction is really wrong, shouldn’t you take a large step?

Roger Grosse
CSC321 Lecture 4: Learning a Classifier
Logistic Regression

- Because \(y \in [0, 1] \), we can interpret it as the estimated probability that \(t = 1 \).
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
Logistic Regression

- Because $y \in [0, 1]$, we can interpret it as the estimated probability that $t = 1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- **Cross-entropy loss** captures this intuition:

$$
\mathcal{L}_{CE}(y, t) = \begin{cases}
-\log y & \text{if } t = 1 \\
-\log 1 - y & \text{if } t = 0
\end{cases}
= -t \log y - (1 - t) \log 1 - y
$$
Logistic Regression:

\[z = \mathbf{w}^\top \mathbf{x} + b \]
\[y = \sigma(z) = \frac{1}{1 + e^{-z}} \]

\[\mathcal{L}_{CE} = -t \log y - (1 - t) \log (1 - y) \]

[[derive the gradient]]
Logistic Regression

Comparison of loss functions:

- zero-one
- least squares
- logistic + LS
- logistic + XE
Logistic Regression

Comparison of gradient descent updates:

- Linear regression:

 \[w \leftarrow w - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x^{(i)} \]

- Logistic regression:

 \[w \leftarrow w - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x^{(i)} \]

Not a coincidence! These are both examples of matching loss functions, but that's beyond the scope of this course.
Logistic Regression

Comparison of gradient descent updates:

- Linear regression:

\[
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}
\]

- Logistic regression:

\[
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}
\]

Not a coincidence! These are both examples of matching loss functions, but that’s beyond the scope of this course.
Another loss function you might encounter is **hinge loss**. Here, we take $t \in \{-1, 1\}$ rather than $\{0, 1\}$.

$$\mathcal{L}_H(y, t) = \max(0, 1 - ty)$$

This is an **upper bound** on 0-1 loss (a useful property for a surrogate loss function).

A linear model with hinge loss is called a **support vector machine**. You already know enough to derive the gradient descent update rules!

Very different motivations from logistic regression, but similar behavior in practice.
Logistic Regression

Comparison of loss functions:

- Zero-one loss
- Least squares loss
- Logistic + Least squares loss
- Logistic + Cross-Entropy loss
- Hinge loss
Multiclass Classification

- What about classification tasks with more than two categories?
Multiclass Classification

- Targets form a discrete set \(\{1, \ldots, K\} \).
- It’s often more convenient to represent them as indicator vectors, or a one-of-K encoding:

\[
t = (0, \ldots, 0, 1, 0, \ldots, 0)
\]

entry \(k \) is 1

- If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

\[
L_{CE}(y, t) = - \sum_{k=1}^{K} t_k \log y_k
\]

\[
= - t^\top (\log y),
\]

where the log is applied elementwise.
Multiclass Classification

- Now there are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix W.
- Also, we have a K-dimensional vector b of biases.
- Linear predictions:
 \[
 z_k = \sum_j w_{kj} x_j + b_k
 \]
- Vectorized:
 \[
 z = Wx + b
 \]
Multiclass Classification

- A natural activation function to use is the **softmax function**, a multivariable generalization of the logistic function:

\[
y_k = \text{softmax}(z_1, \ldots, z_K)_k = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}
\]

- The inputs \(z_k \) are called the **log-odds**.

- **Properties:**
 - Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
 - If one of the \(z_k \)’s is much larger than the others, \(\text{softmax}(\mathbf{z}) \) is approximately the argmax. (So really it’s more like “soft-argmax”.)
 - **Exercise:** how does the case of \(K = 2 \) relate to the logistic function?

- **Note:** sometimes \(\sigma(\mathbf{z}) \) is used to denote the softmax function; in this class, it will denote the logistic function applied elementwise.
Multiclass Classification

- Multiclass logistic regression:
 \[z = Wx + b \]
 \[y = \text{softmax}(z) \]
 \[\mathcal{L}_{CE} = -t^\top (\log y) \]

- Tutorial: deriving the gradient descent updates
Convex Functions

- Recall: a set S is convex if for any $x_0, x_1 \in S$,
 \[(1 - \lambda)x_0 + \lambda x_1 \in S \text{ for } 0 \leq \lambda \leq 1.\]

- A function f is convex if for any x_0, x_1 in the domain of f,
 \[f((1 - \lambda)x_0 + \lambda x_1) \leq (1 - \lambda)f(x_0) + \lambda f(x_1)\]

- Equivalently, the set of points lying above the graph of f is convex.

- Intuitively: the function is bowl-shaped.
Convex Functions

- We just saw that the least-squares loss function $\frac{1}{2}(y - t)^2$ is convex as a function of y.

- For a linear model, $z = \mathbf{w}^\top \mathbf{x} + b$ is a linear function of \mathbf{w} and b. If the loss function is convex as a function of z, then it is convex as a function of \mathbf{w} and b.

\[(1 - \lambda)\mathcal{L}(w_0) + \lambda\mathcal{L}(w_1) \]

\[\mathcal{L}((1 - \lambda)w_0 + \lambda w_1) \]
Convex Functions

Which loss functions are convex?
Convex Functions

Why we care about convexity

- All critical points are minima
- Gradient descent finds the optimal solution (more on this in a later lecture)
Gradient Checking

- We’ve derived a lot of gradients so far. How do we know if they’re correct?
- Recall the definition of the partial derivative:
 \[
 \frac{\partial}{\partial x_i} f(x_1, \ldots, x_N) = \lim_{h \to 0} \frac{f(x_1, \ldots, x_i + h, \ldots, x_N) - f(x_1, \ldots, x_i, \ldots, x_N)}{h}
 \]
- Check your derivatives numerically by plugging in a small value of \(h \), e.g. \(10^{-10} \). This is known as finite differences.
Gradient Checking

- Even better: the two-sided definition

\[
\frac{\partial}{\partial x_i} f(x_1, \ldots, x_N) = \lim_{h \to 0} \frac{f(x_1, \ldots, x_i + h, \ldots, x_N) - f(x_1, \ldots, x_i - h, \ldots, x_N)}{2h}
\]
Gradient checking is really important!
Learning algorithms often appear to work even if the math is wrong.
But:
- They might work much better if the derivatives are correct.
- Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the single most important thing you need to do to get your algorithm to work well.