CSC321 Lecture 21: Bayesian Hyperparameter Optimization

Roger Grosse
Today’s lecture: a neat application of Bayesian parameter estimation to automatically tuning hyperparameters

Recall that neural nets have certain hyperparameters which aren’t part of the training procedure

- E.g. number of units, learning rate, L_2 weight cost, dropout probability

You can evaluate them using a validation set, but there’s still the problem of which values to try

- Brute force search (e.g. grid search, random search) is very expensive, and wastes time trying silly hyperparameter configurations
Hyperparameter tuning is a kind of black-box optimization: you want to minimize a function $f(\theta)$, but you only get to query values, not compute gradients.

- Input θ: a configuration of hyperparameters
- Function value $f(\theta)$: error on the validation set

Each evaluation is expensive, so we want to use few evaluations.

Suppose you’ve observed the following function values. Where would you try next?
Overview

- You want to query a point which:
 - you expect to be good
 - you are uncertain about
- How can we model our uncertainty about the function?
- Bayesian regression lets us predict not just a value, but a distribution. That’s what the first half of this lecture is about.
Linear Regression as Maximum Likelihood

- Recall linear regression:
 \[
 y = \mathbf{w}^\top \mathbf{x} + b
 \]
 \[
 \mathcal{L}(y, t) = \frac{1}{2} (t - y)^2
 \]

- This has a probabilistic interpretation, where the targets are assumed to be a linear function of the inputs, plus Gaussian noise:
 \[
 t \mid \mathbf{x} \sim \mathcal{N}(\mathbf{w}^\top \mathbf{x} + b, \sigma^2)
 \]

- Linear regression is just maximum likelihood under this model:
 \[
 \frac{1}{N} \sum_{i=1}^{N} \log p(t^{(i)} \mid x^{(i)}; \mathbf{w}, b) = \frac{1}{N} \sum_{i=1}^{N} \log \mathcal{N}(t^{(i)}; \mathbf{w}^\top \mathbf{x} + b, \sigma^2)
 \]
 \[
 = \frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(t^{(i)} - \mathbf{w}^\top \mathbf{x} - b)^2}{2\sigma^2} \right) \right]
 \]
 \[
 = \text{const} - \frac{1}{2N\sigma^2} \sum_{i=1}^{N} (t^{(i)} - \mathbf{w}^\top \mathbf{x} - b)^2
 \]
Bayesian Linear Regression

- We’re interested in the uncertainty
- **Bayesian linear regression** considers various plausible explanations for how the data were generated.
- It makes predictions using all possible regression weights, weighted by their posterior probability.

![Graphs showing regression lines with varying numbers of observations](image-url)
Bayesian Linear Regression

- Leave out the bias for simplicity
- **Prior distribution:** a broad, spherical (multivariate) Gaussian centered at zero:
 \[w \sim \mathcal{N}(0, \nu^2 I) \]
- **Likelihood:** same as in the maximum likelihood formulation:
 \[t \mid x, w \sim \mathcal{N}(w^\top x, \sigma^2) \]
- **Posterior:**
 \[
 \log p(w \mid D) = \text{const} + \log p(w) + \sum_{i=1}^{N} \log p(t^{(i)} \mid w, x^{(i)})
 \]
 \[
 = \text{const} + \log \mathcal{N}(w; 0, \nu^2 I) + \sum_{i=1}^{N} \log \mathcal{N}(t^{(i)}; w^\top x^{(i)}, \sigma)
 \]
 \[
 = \text{cost} - \frac{1}{2\nu^2} w^\top w - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (t^{(i)} - w^\top x^{(i)})^2
 \]
Bayesian Linear Regression

- Posterior distribution in the univariate case:

\[
\log p(w \mid D) = \text{const} - \frac{1}{2\nu^2} w^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (t^{(i)} - wx^{(i)})^2
\]

\[
= \text{const} - \frac{1}{2} \left(\frac{1}{\nu^2} + \frac{1}{\sigma^2} \sum_{i=1}^{N} [x^{(i)}]^2 \right) w^2 + \left(\frac{1}{\sigma^2} \sum_{i=1}^{N} x^{(i)} t^{(i)} \right) w
\]

- This is a Gaussian distribution with

\[
\mu_{\text{post}} = \frac{\frac{1}{\sigma^2} \sum_{i=1}^{N} x^{(i)} t^{(i)}}{\frac{1}{\nu^2} + \frac{1}{\sigma^2} \sum_{i=1}^{N} [x^{(i)}]^2}
\]

\[
\sigma_{\text{post}}^2 = \frac{1}{\frac{1}{\nu^2} + \frac{1}{\sigma^2} \sum_{i=1}^{N} [x^{(i)}]^2}
\]

- The formula for \(\mu_{\text{post}}\) is basically the same as Homework 5, Question 1

- The posterior in the multivariate case is a multivariate Gaussian. The derivation is analogous, but with some linear algebra.
Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
Bayesian Linear Regression

- We can turn this into nonlinear regression using basis functions.
- E.g., Gaussian basis functions

\[\phi_j(x) = \exp \left(-\frac{(x - \mu_j)^2}{2s^2} \right) \]

— Bishop, Pattern Recognition and Machine Learning
Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
Bayesian Linear Regression

Posterior predictive distribution:
Bayesian Neural Networks

- Basis functions (i.e. feature maps) are great in one dimension, but don’t scale to high-dimensional spaces.
- Recall that the second-to-last layer of an MLP can be thought of as a feature map:

\[
\begin{align*}
\text{linear regressor } &/ \text{ classifier} \\
\mathbf{y} &\quad = \phi(\mathbf{x}) \\
\mathbf{h}^{(2)} &\quad = \phi(\mathbf{x}) \\
\mathbf{h}^{(1)} &\quad = \phi(\mathbf{x}) \\
\mathbf{x} &
\end{align*}
\]

- It is possible to train a Bayesian neural network, where we define a prior over all the weights for all layers, and make predictions using Bayesian parameter estimation.
 - The algorithms are complicated, and beyond the scope of this class.
 - A simple approximation which sometimes works: first train the MLP the usual way, and then do Bayesian linear regression with the learned features.
Bayesian Optimization

- Now let’s apply all of this to black-box optimization. The technique we’ll cover is called **Bayesian optimization**.
- The actual function we’re trying to optimize (e.g. validation error as a function of hyperparameters) is really complicated. Let’s approximate it with a simple function, called the **surrogate function**.
- After we’ve queried a certain number of points, we can condition on these to infer the posterior over the surrogate function using Bayesian linear regression.
Bayesian Optimization

- To choose the next point to query, we must define an acquisition function, which tells us how promising a candidate it is.
- What’s wrong with the following acquisition functions:
 - posterior mean: $-\mathbb{E}[f(\theta)]$
 - posterior variance: $\text{Var}(f(\theta))$
- Desiderata:
 - high for points we expect to be good
 - high for points we’re uncertain about
 - low for points we’ve already tried
- Candidate 1: probability of improvement (PI)

$$\text{PI} = \Pr(f(\theta) < \gamma - \epsilon),$$

where γ is the best value so far, and ϵ is small.
Bayesian Optimization

Examples:

- Plots show the posterior predictive distribution for $f(\theta)$.
Bayesian Optimization

- The problem with Probability of Improvement (PI): it queries points it is highly confident will have a small improvement
 - Usually these are right next to ones we’ve already evaluated
- A better choice: Expected Improvement (EI)

\[EI = \mathbb{E}[\max(\gamma - f(\theta), 0)] \]

- The idea: if the new value is much better, we win by a lot; if it’s much worse, we haven’t lost anything.
- There is an explicit formula for this if the posterior predictive distribution is Gaussian.
Bayesian Optimization

Examples:

- EI = 0.199
- EI = 0.004
- EI = 0.396
- EI = 0.15
True Function with Three Observations
Bayesian nonlinear regression predictive distributions

- 95%
- 90%
- 80%
How do the predictions compare to the current best?

- 95%
- 90%
- 80%
How do the predictions compare to the current best?

Expected Improvement
Bayesian Optimization

- I showed one-dimensional visualizations, but the higher-dimensional case is conceptually no different.
 - Maximize the acquisition function using gradient descent
 - Use lots of random restarts, since it is riddled with local maxima
 - BayesOpt can be used to optimize tens of hyperparameters.
- I’ve described BayesOpt in terms of Bayesian linear regression with basis functions learned by a neural net.
 - In practice, it’s typically done with a more advanced model called Gaussian processes, which you learn about in CSC 412.
 - But Bayesian linear regression is actually useful, since it scales better to large numbers of queries.
- One variation: some configurations can be much more expensive than others
 - Use another Bayesian regression model to estimate the computational cost, and query the point that maximizes expected improvement per second
Bayesian Optimization

- BayesOpt can often beat hand-tuned configurations in a relatively small number of steps.
- Results on optimizing hyperparameters (layer-specific learning rates, weight decay, and a few other parameters) for a CIFAR-10 conv net:

 Each function evaluation takes about an hour
 Human expert = Alex Krizhevsky, the creator of AlexNet
Bayesian Optimization

- Spearmint is an open-source BayesOpt software package that optimizes hyperparameters for you:

 https://github.com/JasperSnoek/spearmint

- Much of this talk was taken from the following two papers:

 http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms

