
Geoffrey Hinton  
Nitish Srivastava, 
Kevin Swersky 
Tijmen Tieleman 
Abdel-rahman Mohamed  

Neural Networks for Machine Learning 
 

Lecture 15c 
Deep autoencoders for document retrieval and 

visualization 



How to find documents that are similar to a query document 

•  Convert each document into a �bag of words�. 
–  This is a vector of word counts ignoring  order.  
–  Ignore stop words (like �the� or �over�) 

•  We could compare the word counts of the query 
document and millions of other documents but this 
is too slow.  
–  So we reduce each query vector to a much 

smaller vector that still contains most of the 
information about the content of the document. 
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How to compress the count vector  

•  We train the neural network to 
reproduce its input vector as its 
output 

•  This forces it to compress as 
much information as possible 
into the 10 numbers in the 
central bottleneck. 

•  These 10 numbers are then a 
good way to compare 
documents. 
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The non-linearity used for reconstructing bags of words 

•  Divide the counts in a bag of words 
vector by N, where N is the total number 
of non-stop words in the document. 
–  The resulting probability vector gives 

the probability of getting a particular 
word if we pick a non-stop word at 
random from the document. 

•  At the output of the autoencoder, we use 
a softmax. 
–  The probability vector defines the 

desired outputs of the softmax.  

•  When we train the first 
RBM in the stack we use 
the same trick.  
–  We treat the word 

counts as probabilities, 
but we make the visible 
to hidden weights N 
times bigger than the 
hidden to visible 
because we have N 
observations from the 
probability distribution. 



Performance of the autoencoder at document 
retrieval 

•  Train on bags of 2000 words for 400,000 training cases of business 
documents. 
–  First train a stack of RBM�s. Then fine-tune with backprop. 

•  Test on a separate 400,000 documents.  
–  Pick one test document as a query. Rank order all the other test 

documents by using the cosine of the angle between codes.  
–  Repeat this using each of the 400,000 test documents as the 

query (requires 0.16 trillion comparisons). 
•  Plot the number of retrieved documents against the proportion that 

are in the same hand-labeled class as the query document. 
Compare with LSA (a version of PCA). 



Retrieval performance on 400,000 Reuters business news stories 



First compress all documents to 2 numbers using PCA on 
log(1+count). Then use different colors for different categories. 



First compress all documents to 2 numbers using deep auto.       
Then use different colors for different document categories 
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Semantic hashing 



Finding binary codes for documents 

 
•  Train an auto-encoder using 30 logistic 

units for the code layer. 
•  During the fine-tuning stage, add noise 

to the inputs to the code units. 
–  The noise forces their activities  to 

become bimodal in order to resist 
the effects of the noise. 

–  Then we simply threshold the 
activities of the 30 code units to get 
a binary code. 

•  Krizhevsky discovered later that its 
easier to just use binary stochastic 
units in the code layer during training. 

 2000  reconstructed counts 

500 neurons 

     2000  word counts 

500 neurons  

250 neurons  

250 neurons  

30   code 



Using a deep autoencoder as a hash-function for 
finding approximate matches 
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