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Overview

o Last time: fitting mixture models
e This is a kind of localist representation: each data point is explained by
exactly one category
o Distributed representations are much more powerful.
@ Today, we'll talk about a different kind of latent variable model,
called Boltzmann machines.

e It's a kind of distributed representation.
o The idea is to learn soft constraints between variables.
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Overview

@ In Assignment 4, you will fit a mixture model to images of

handwritten digits.
Training samples

MoB (100)

@ Problem: if you use one component per digit class, there’s still lots of
variability. Each component distribution would have to be really
complicated.

@ Some 7's have strokes through them. Should those belong to a
separate mixture component?
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Boltzmann Machines

@ A lot of what we know about images consists of soft constraints,
e.g. that neighboring pixels probably take similar values

@ A Boltzmann machine is a collection of binary random variables which
are coupled through soft constraints. For now, assume they take
values in {—1,1}.

@ We represent it as an undirected graph:

@ The biases determine how much each unit likes to be on (i.e. = 1)

@ The weights determine how much two units like to take the same
value
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Boltzmann Machines

@ A Boltzmann machine defines a probability distribution, where the
probability of any joint configuration is log-linear in a happiness
function H.

p(x) = 5 exp(H(x))
2= exp(H(x)

X
H(X) = Z WiiXiXj + Z b;x;
i#j i
@ Z is a normalizing constant called the partition function
@ This sort of distribution is called a Boltzmann distribution, or Gibbs
distribution.
o Note: the happiness function is the negation of what physicists call the
energy. Low energy = happy.
e In this class, we'll use happiness rather than energy so that we don't

have lots of minus signs everywhere.
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Boltzmann Machines

Example:
+1
X1 X2 X3 | wixixe wizxixs  wesxexs  boxe | H(x) | exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 0-101 -1 1 -2 -1 -3 0.050 0.0003
101 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158
Z =172.420
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Boltzmann Machines

Marginal probabilities:

pla=1)= 2 3" exp(H(x))

x:x1=1

20.086 + 0.050 + 0.368 +2.718

172.420
=0.135
X1 X2 X3 W12X1 X2 W13X1X3 W23 X2X3 b2X2 H(X) exp(H(x)) p(x)
-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-10-1 1 -1 1 -2 -1 -3 0.050 0.0003
11 -1 1 -1 -2 1 -3 0.368 0.0021
-1 001 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158
Z =172.420
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Boltzmann Machines

Conditional probabilities:

p(X1:1|X2:—1):

Zx:xlzl,xzz—l exp( H(X))

Zx:xz:—l eXp(H(x))
20.086 +- 0.050

0.368 + 0.050 + 20.086 + 0.050 +1
= 0.980

X1 X2 X3 | wixixe  wizxixs  waxexs  baxo | H(x) | exp(H(x)) | p(x)

-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-10-1 1 -1 1 -2 -1 -3 0.050 0.0003
11 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158
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Boltzmann Machines

@ We just saw conceptually how to compute:

the partition function Z

o the probability of a configuration, p(x) = exp(H(x))/Z
e the marginal probability p(x;)

o the conditional probability p(x;| x;)

@ But these brute force strategies are impractical, since they require
summing over exponentially many configurations!

@ For those of you who have taken complexity theory: these tasks are
#P-hard.

@ Two ideas which can make the computations more practical

o Obtain approximate samples from the model using Gibbs sampling
e Design the pattern of connections to make inference easy
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Conditional Independence

@ Two sets of random variables X and ) are conditionally independent
given a third set Z if they are independent under the conditional
distribution given values of Z.

@ Example:

p(x1, X2, X5 | X3, xa)
o exp (Wizxix2 + Wizxix3s + WoaxoXa + WasX3Xs + WasXaXs)

= exp (Wizx1x2 + wizxix3 + Woaxoxa) exp (Wssxsxs + WasxaXs)

only depends on x1, x» only depends on x5

@ In this case, x; and x» are conditionally independent of x5 given x3
and X4.

@ In general, two random variables are conditionally independent if they
are in disconnected components of the graph when the observed
nodes are removed.

@ This is covered in much more detail in CSC 412.
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N
Conditional Probabilities

@ We can compute the conditional probability of x; given its
neighbors in the graph.

@ For this formula, it's convenient to make the variables take I
values in {0, 1}, rather than {—1,1}.

(=)
/ \

@ Formula for the conditionals (derivation in the lecture notes):

{
Pr(xi = 1|xn,xr) = Pr(x; = 1|xn) h

=0 E wiiXj + b;
JEN

@ Note that it doesn’'t matter whether we condition on xg or
what its values are.

@ This is the same as the formula for the activations in an
MLP with logistic units.

o For this reason, Boltzmann machines are sometimes
drawn with bidirectional arrows.
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-
Gibbs Sampling

@ Consider the following process, called Gibbs sampling

@ We cycle through all the units in the network, and sample each one
from its conditional distribution given the other units:

Pr(xi=1|x_j) =0 Z wiix; + b;
J#i
@ It's possible to show that if you run this procedure long enough, the

configurations will be distributed approximately according to the
model distribution.

@ Hence, we can run Gibbs sampling for a long time, and treat the
configurations like samples from the model

@ To sample from the conditional distribution p(x;|xa), for some set
x4, simply run Gibbs sampling with the variables in x4 clamped
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Learning a Boltzmann Machine

@ A Boltzmann machine is parameterized by weights and biases, just
like a neural net.

@ So far, we've taken these for granted. How can we learn them?

@ For now, suppose all the units correspond to observables (e.g. image
pixels), and we have a training set {x(1), ... x(M}.

o Log-likelihood:

1 N
{= 7D logp(x)
INl
= Z — log Z]
:lN
7 2 He

@ Want to increase the average happlness and decrease log Z
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Learning a Boltzmann Machine

@ Derivatives of average happiness:

0 ,
H(x H(x()
aWJkNZ Nz’,:awjk ()
1 0
=N 2 T | D ke + E by
i jk JEk
1 Z
= Edata[xjxk]
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Learning a Boltzmann Machine
@ Derivatives of log Z:

d 0
i log Z = i Iogzxzexp(H(x))

- IE‘:model [Xij]
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Learning a Boltzmann Machine

o Putting this together:
or
TM/'[( - Edata[xjxk] - IEmodel [ijk]
j
@ Intuition: if x; and X, co-activate more often in the data than in
samples from the model, then increase the weight to make them
co-activate more often.
@ The two terms are called the positive and negative statistics
o Can estimate Ega¢a[Xjxk] stochastically using mini-batches
o Can estimate Epoqe1[XjXk] by running a long Gibbs chain
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Restricted Boltzmann Machines

@ We've assumed the Boltzmann machine was fully observed. But more
commonly, we'll have hidden units as well.

@ A classic architecture called the restricted Boltzmann machine
assumes a bipartite graph over the visible units and hidden units:

h
w
A

@ We would like the hidden units to learn more abstract features of the
data.

<
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Restricted Boltzmann Machines

@ Our maximum likelihood update rule generalizes to the case of
unobserved variables (derivation in the notes)

ol
Owij

= IEdata[‘/jhk] - IEmodel[thk]

@ Here, the data distribution refers to the conditional distribution given
v

N
1 i ;
IE:dad:a[‘/jhk] = N Z VJ( )E[hk ‘ V(I)]
i=1
@ We're filling in the hidden variables using their posterior expectations,
just like in E-M!
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N
Restricted Boltzmann Machines

@ Under the bipartite structure, the hidden units are all conditionally
independent given the visibles, and vice versa:

@ Since the units are independent, we can vectorize the computations
just like for MLPs:

@ Vectorized updates:

ol

oW = EVNdata[FWT] - ]Ev,hwmodel[hVT]
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Restricted Boltzmann Machines

@ To estimate the model statistics for the negative update, start from
the data and run a few steps of Gibbs sampling.

o By the conditional independence property, all the hiddens can be
sampled in parallel, and then all the visibles can be sampled in parallel.

positive statistics negative statistics

@ This procedure is called contrastive divergence.

@ It's a terrible approximation to the model distribution, but it appears
to work well anyway.
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Restricted Boltzmann Machines

Some features learned by an RBM on MNIST:
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Restricted Boltzmann Machines

Some features learned on MNIST with an additional sparsity constraint (so
that each hidden unit activates only rarely):
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Restricted Boltzmann Machines

@ RBMs vs. mixture of Bernoullis as generative models of MNIST

(baseline) (RBMs)
MoB (100) CD25(500)

Training samples

@ Log-likelihood scores on the test set:

o MoB: -137.64 nats
o RBM: -86.34 nats
e 50 nat differencel
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Restricted Boltzmann Machines

@ Other complex datasets that Boltzmann machines can model:
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NORB (action figures)
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Omniglot (characters
in many world languages)
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