CSC321 Lecture 11: Convolutional Networks J

Roger Grosse

Roger Grosse CSC321 Lecture 11: Convolutional Networks 1/35

Overview

What makes vision hard?

@ Vison needs to be robust to a lot of transformations or distortions:
e change in pose/viewpoint
e change in illumination
o deformation
e occlusion (some objects are hidden behind others)
@ Many object categories can vary wildly in appearance (e.g. chairs)
@ Geoff Hinton: “Imaging a medical database in which the age of the
patient sometimes hops to the input dimension which normally codes
for weight!”

Roger Grosse CSC321 Lecture 11: Convolutional Networks 2/35

Overview

Recall we looked at some hidden layer features for classifying handwritten
digits:

This isn't going to scale to full-sized images.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 3/35

Overview

Suppose we want to train a network that takes a 200 x 200 RGB image as
input.

[1000 hidden units |

densely connected

200
200
L 3

What is the problem with having this as the first layer ?

@ Too many parameters! Input size = 200 x 200 x 3 = 120K.
Parameters = 120K x 1000 = 120 million.

@ What happens if the object in the image shifts a little ?

Roger Grosse CSC321 Lecture 11: Convolutional Networks 4 /35

Overview

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

E.g., edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors that are applied at all image locations.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 5/35

Overview

So far, we've seen two types of layers:
o fully connected layers
e embedding layers (i.e. lookup tables)

Different layers could be stacked together to build powerful models.
Let's add another layer type: the convolution layer.

Roger Grosse CSC321 Lecture 11: Convolutional Networks

6/ 35

Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 7 /35

Convolution Layers

Locally connected layers:

Each column of hidden units looks at a small region of the image.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 8 /35

Convolution Layers

Convolution layers:

Tied weights

Each column of hidden units looks at a small region of the image, and the
weights are shared between all image locations.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 9/35

-
Going Deeply Convolutional

Convolution layers can be stacked:

Tied weights

Roger Grosse CSC321 Lecture 11: Convolutional Networks 10 / 35

Convolution

We've already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we'll introduce a new high-level operation, convolution. Here the
motivation isn't computational efficiency — we'll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 11 /35

Convolution

We've already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we'll introduce a new high-level operation, convolution. Here the
motivation isn't computational efficiency — we'll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

Let's look at the 1-D case first. If a and b are two arrays,
(3 * b)t = Z aTbt_q—.
T

Note: indexing conventions are inconsistent. We'll explain them in each
case.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 11 /35

Convolution

Method 1: translate-and-scale

Roger Grosse CSC321 Lecture 11: Convolutional Networks 12 / 35

Convolution

Method 2: flip-and-filter

. 112
T« il =

Roger Grosse CSC321 Lecture 11: Convolutional Networks 13 / 35

Convolution

Convolution can also be viewed as matrix multiplication:

1
1
(2,-1,1) % (1,1,2) = | 2

N = =
N = =
[

Roger Grosse CSC321 Lecture 11: Convolutional Networks 14 / 35

Convolution

Some properties of convolution:

o Commutativity
axb=>bxa

o Linearity
a*()\lb+/\2c) =MNaxb+ daxc

Roger Grosse CSC321 Lecture 11: Convolutional Networks 15 / 35

2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A*B IJ_ZZAstBI s, j—t-

Roger Grosse CSC321 Lecture 11: Convolutional Networks 16 / 35

2-D Convolution

Method 1: Translate-and-Scale

1]3]1
R
2|21
1]3]1 1]5]7]2
AR 1]2 ol-1]1 0-2]-4]1
ol-1]1 = 2 X = —
* ol + 2|21 2|6 |43
221
ol-2]2]1
41 x 1]3 1
- 0-1]1
2]2]1

Roger Grosse CSC321 Lecture 11: Convolutional Networks 17 / 35

N
2-D Convolution

Method 2: Flip-and-Filter

1131
o11>|<12
0 |-1
212 -1
-1 0
31 X 2 115]7]2
101 =204 | 1
21211 2|161|4 |-3
opr-2 -2 |1

Roger Grosse CSC321 Lecture 11: Convolutional Networks 18 / 35

2-D Convolution

The thing we convolve by is called a kernel, or fitler.

What does this convolution kernel do?

o(11]0
>l< 4
0|10

Roger Grosse CSC321 Lecture 11: Convolutional Networks 19 / 35

2-D Convolution

The thing we convolve by is called a kernel, or fitler.

What does this convolution kernel do?

o(11]0
>l< 4
0|10

Roger Grosse CSC321 Lecture 11: Convolutional Networks 19 / 35

2-D Convolution

What does this convolution kernel do?

0l-1]0
sk |-1]8]-
0/-1]0

Roger Grosse CSC321 Lecture 11: Convolutional Networks 20 / 35

2-D Convolution

What does this convolution kernel do?

o|-1]0
sk |-1]8]-
0[-1]0

Roger Grosse CSC321 Lecture 11: Convolutional Networks 20 / 35

2-D Convolution

What does this convolution kernel do?

0[-1]0
ko[-1] 4]
0/-1]0

Roger Grosse CSC321 Lecture 11: Convolutional Networks 21 /35

2-D Convolution

What does this convolution kernel do?

0l-1]0
ko[-1] 4]
0|10

Roger Grosse CSC321 Lecture 11: Convolutional Networks 21 /35

2-D Convolution

What does this convolution kernel do?

0| -1
%k |2]0]-2
1101

Roger Grosse CSC321 Lecture 11: Convolutional Networks 22 /35

2-D Convolution

What does this convolution kernel do?

0| -1
%k |2]0]-2
1101

Roger Grosse CSC321 Lecture 11: Convolutional Networks 22 /35

Convolutional networks

Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

convolution

Roger Grosse CSC321 Lecture 11: Convolutional Networks 23 /35

Convolutional networks

Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

Example first-layer filters

(Zeiler and Fergus, 2013, Visualizing and understanding

convolutional networks)

convolution

Roger Grosse CSC321 Lecture 11: Convolutional Networks 23 /35

Convolutional networks

It's common to apply a linear rectification nonlinearity: y; = max(z;,0)

Why might we do this?

convolution linear
rectification

convolution layer

Roger Grosse CSC321 Lecture 11: Convolutional Networks 24 / 35

Convolutional networks

It's common to apply a linear rectification nonlinearity: y; = max(z;,0)

convolution linear
rectification

convolution layer

Roger Grosse

Why might we do this?

@ Convolution is a linear operation.
Therefore, we need a nonlinearity,
otherwise 2 convolution layers
would be no more powerful than 1.

@ Two edges in opposite directions
shouldn’t cancel

@ Makes the gradients sparse, which
helps optimization (recall the
backprop exercise from Lecture 6)

CSC321 Lecture 11: Convolutional Networks 24 / 35

Pooling layers

The other type of layer in a pooling layer. These layers reduce the size of
the representation and build in invariance to small transformations.

Most commonly, we use max-pooling, which computes the maximum value
of the units in a pooling group:

Vi = max z;
j in pooling group

Roger Grosse CSC321 Lecture 11: Convolutional Networks 25 /35

Convolutional networks

convolution linear max convolution
rectification pooling
convolution layer pooling layer

Roger Grosse CSC321 Lecture 11: Convolutional Networks 26 / 35

Convolutional networks

Because of pooling, higher-layer filters can cover a larger region of the input than
equal-sized filters in the lower layers.

convolution linear max convolution
rectification pooling
convolution layer pooling layer

Roger Grosse CSC321 Lecture 11: Convolutional Networks 27 / 35

Equivariance and Invariance

We said the network's responses should be robust to translations of the
input. But this can mean two different things.

@ Convolution layers are equivariant: if you translate the inputs, the
outputs are translated by the same amount.

o We'd like the network’s predictions to be invariant: if you translate
the inputs, the prediction should not change.

@ Pooling layers provide invariance to small translations.

Roger Grosse CSC321 Lecture 11: Convolutional Networks

28 / 35

Convolution Layers

Each layer consists of several feature maps, each of which is an array. For
the input layer, the feature maps are usually called channels.

o If the input layer represents a grayscale image, it consists of one
channel. If it represents a color image, it consists of three channels.

Each unit is connected to each unit within its receptive field in the
previous layer. This includes all of the previous layer's feature maps.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 29 / 35

Convolution Layers

For simplicity, focus on 1-D signals (e.g. audio waveforms). Suppose the
convolution layer’s input has J feature maps and its output has / feature
maps. Let t index the locations. Suppose the convolution kernels have
radius R, i.e. dimension K = 2R + 1.

Each unit in a convolution layer receives inputs from all the units in its
receptive field in the previous layer:

J R
Yit = E E Wi jrXj t4-
j=117=—R

In terms of convolution,

yi = ij * flip(wj ;).

J

Roger Grosse CSC321 Lecture 11: Convolutional Networks 30/ 35

|
Backprop Updates

How do we train a conv net? With backprop, of course!

Recall what we need to do. Backprop is a message passing procedure,
where each layer knows how to pass messages backwards through the
computation graph. Let's determine the updates for convolution layers.

@ We assume we are given the loss derivatives y; ; with respect to the
output units.

@ We need to compute the cost derivatives with respect to the input
units and with respect to the weights.

The only new feature is: how do we do backprop with tied weights?

Roger Grosse CSC321 Lecture 11: Convolutional Networks 31/35

|
Backprop Updates

Consider the computation graph for the inputs:

x
1 Y1
x Y2
T3 Y3
Ty

Each input unit influences all the output units that have it within their
receptive fields. Using the multivariate Chain Rule, we need to sum
together the derivative terms for all these edges.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 32/35

|
Backprop Updates

Recall the formula for the convolution layer:
J R
yi,t = § E : Wi:jvT)g7t+T'
j=17=—R

We compute the derivatives, which requires summing over all the outputs
units which have the input unit in their receptive field:

8yl',t77'
pu Al L
0xj.t

p
= E Yit—r Wijr
.

Written in terms of convolution,

Xjt = Yit—

Roger Grosse CSC321 Lecture 11: Convolutional Networks 33 /35

|
Backprop Updates

Consider the computation graph for the weights:

w Y2

wi——Y3

Each of the weights affects all the output units for the corresponding input
and output feature maps.

Roger Grosse CSC321 Lecture 11: Convolutional Networks 34 /35

|
Backprop Updates

Recall the formula for the convolution layer:
J R
Yiit = Z Z Wi jrXj t4r-
j=17=-R

We compute the derivatives, which requires summing over all spatial
locations:

8)/ t
Wl,jT Zyl d
Wi j.r

= g Yit Xj t4+1
t

Roger Grosse CSC321 Lecture 11: Convolutional Networks 35 /35

