
CSC321 Lecture 1: Introduction

Roger Grosse

Roger Grosse CSC321 Lecture 1: Introduction 1 / 29

What is machine learning?

For many problems, it’s difficult to program the correct behavior by
hand

recognizing people and objects
understanding human speech

Machine learning approach: program an algorithm to automatically
learn from data, or from experience

Some reasons you might want to use a learning algorithm:

hard to code up a solution by hand (e.g. vision, speech)
system needs to adapt to a changing environment (e.g. spam detection)
want the system to perform better than the human programmers
privacy/fairness (e.g. ranking search results)

Roger Grosse CSC321 Lecture 1: Introduction 2 / 29

What is machine learning?

For many problems, it’s difficult to program the correct behavior by
hand

recognizing people and objects
understanding human speech

Machine learning approach: program an algorithm to automatically
learn from data, or from experience

Some reasons you might want to use a learning algorithm:

hard to code up a solution by hand (e.g. vision, speech)
system needs to adapt to a changing environment (e.g. spam detection)
want the system to perform better than the human programmers
privacy/fairness (e.g. ranking search results)

Roger Grosse CSC321 Lecture 1: Introduction 2 / 29

What is machine learning?

For many problems, it’s difficult to program the correct behavior by
hand

recognizing people and objects
understanding human speech

Machine learning approach: program an algorithm to automatically
learn from data, or from experience

Some reasons you might want to use a learning algorithm:

hard to code up a solution by hand (e.g. vision, speech)
system needs to adapt to a changing environment (e.g. spam detection)
want the system to perform better than the human programmers
privacy/fairness (e.g. ranking search results)

Roger Grosse CSC321 Lecture 1: Introduction 2 / 29

What is machine learning?

It’s similar to statistics...

Both fields try to uncover patterns in data
Both fields draw heavily on calculus, probability, and linear algebra, and
share many of the same core algorithms

But it’s not statistics!

Stats is more concerned with helping scientists and policymakers draw
good conclusions; ML is more concerned with building autonomous
agents
Stats puts more emphasis on interpretability and mathematical rigor;
ML puts more emphasis on predictive performance, scalability, and
autonomy

Roger Grosse CSC321 Lecture 1: Introduction 3 / 29

What is machine learning?

It’s similar to statistics...

Both fields try to uncover patterns in data
Both fields draw heavily on calculus, probability, and linear algebra, and
share many of the same core algorithms

But it’s not statistics!

Stats is more concerned with helping scientists and policymakers draw
good conclusions; ML is more concerned with building autonomous
agents
Stats puts more emphasis on interpretability and mathematical rigor;
ML puts more emphasis on predictive performance, scalability, and
autonomy

Roger Grosse CSC321 Lecture 1: Introduction 3 / 29

What is machine learning?

Types of machine learning

Supervised learning: have labeled examples of the correct behavior
Reinforcement learning: learning system receives a reward signal,
tries to learn to maximize the reward signal
Unsupervised learning: no labeled examples – instead, looking for
interesting patterns in the data

Roger Grosse CSC321 Lecture 1: Introduction 4 / 29

Course information

Course about machine learning, with a focus on neural networks

Independent of CSC411, and CSC412, with about 25% overlap in topics
First 2/3: supervised learning
Last 1/3: unsupervised learning
Maybe a bit of reinforcement learning, time permitting

Two sections

Equivalent content, same assignments and exams
Both sections are full, so please attend your own.

Roger Grosse CSC321 Lecture 1: Introduction 5 / 29

Course information

Formal prerequisites:

Calculus: (MAT136H1 with a minimum mark of 77)/(MAT137Y1
with a minimum mark of 73)/(MAT157Y1 with a minimum mark of
67)/MAT235Y1/MAT237Y1/MAT257Y1
Linear Algebra: MAT221H1/MAT223H1/MAT240H1
Probability: STA247H1/STA255H1/STA257H1
Multivariable calculus (recommended):
MAT235Y1/MAT237Y1/MAT257Y1
Programming experience (recommended)

Roger Grosse CSC321 Lecture 1: Introduction 6 / 29

Course information

Expectations and marking
Weekly homeworks (10% of total mark)

Due Monday nights at 11:59pm, starting 1/16
2-3 short conceptual questions
Use material covered up through Tuesday of the preceding week

4 programming assignments (10% each)

Python
10-15 lines of code
may also involve some mathematical derivations
give you a chance to experiment with the algorithms

Exams

midterm (15%)
final (35%)

See Course Information handout for detailed policies

Roger Grosse CSC321 Lecture 1: Introduction 7 / 29

Course information

Textbooks
None, but we link to lots of free online resources. (see syllabus)

Professor Geoffrey Hinton’s Coursera lectures
the Deep Learning textbook by Goodfellow et al.
Metacademy

I will try to post detailed lecture notes, but I will not have time to
cover every lecture.

Tutorials

Roughly every week
Programming background; worked-through examples

Roger Grosse CSC321 Lecture 1: Introduction 8 / 29

Course information

Course web page:
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/

Includes detailed course information handout

Roger Grosse CSC321 Lecture 1: Introduction 9 / 29

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/

Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

Task: given an image of a handwritten digit, predict the digit class

Input: the image
Target: the digit class

Data: 70,000 images of handwritten digits labeled by humans

Training set: first 60,000 images, used to train the network
Test set: last 10,000 images, not available during training, used to
evaluate performance

This dataset is the “fruit fly” of neural net research

Current best algorithm has only 0.23% error rate on the test set!

Roger Grosse CSC321 Lecture 1: Introduction 10 / 29

Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

Task: given an image of a handwritten digit, predict the digit class

Input: the image
Target: the digit class

Data: 70,000 images of handwritten digits labeled by humans

Training set: first 60,000 images, used to train the network
Test set: last 10,000 images, not available during training, used to
evaluate performance

This dataset is the “fruit fly” of neural net research

Current best algorithm has only 0.23% error rate on the test set!

Roger Grosse CSC321 Lecture 1: Introduction 10 / 29

Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

Task: given an image of a handwritten digit, predict the digit class

Input: the image
Target: the digit class

Data: 70,000 images of handwritten digits labeled by humans

Training set: first 60,000 images, used to train the network
Test set: last 10,000 images, not available during training, used to
evaluate performance

This dataset is the “fruit fly” of neural net research

Current best algorithm has only 0.23% error rate on the test set!

Roger Grosse CSC321 Lecture 1: Introduction 10 / 29

Supervised learning examples

What makes a “2”?It is very hard to say what makes a 2

Roger Grosse CSC321 Lecture 1: Introduction 11 / 29

Supervised learning examples

Object recognition
Some examples from an earlier version of the net

(Krizhevsky and Hinton, 2012)

ImageNet dataset: thousands of categories, millions of labeled images

Lots of variability in viewpoint, lighting, etc.

Error rate dropped from 25.7% to 5.7% over the course of a few years!

Roger Grosse CSC321 Lecture 1: Introduction 12 / 29

Supervised learning examples

Caption generation

Given: dataset of Flickr images with captions
More examples at http://deeplearning.cs.toronto.edu/i2t

Roger Grosse CSC321 Lecture 1: Introduction 13 / 29

http://deeplearning.cs.toronto.edu/i2t

Unsupervised learning examples

Unsupervised learning: no labeled examples – instead, looking for
interesting patterns in the data

E.g. visualization of documents; algorithm was given 800,000 newswire
stories, and learned to represent these documents as points in
two-dimensional space

adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506

 o
n

Ju
ly

 1
3,

 2
00

8
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

Colors are based on human labels, but these weren’t given to the algorithm

Roger Grosse CSC321 Lecture 1: Introduction 14 / 29

Unsupervised learning examples

Automatic mouse tracking

When biologists do behavioral genetics researchers on mice, it’s very
time consuming for a person to sit and label everything a mouse does

The Datta lab at Harvard is building a system for automatically
tracking mouse behaviors

Goal: show the researchers a summary of how much time different
mice spend on various behaviors, so they can determine the effects of
the genetic manipulations

One of the major challenges is that we don’t know the right
“vocabulary” for describing the behaviors — clustering the
observations into meaningful groups is an unsupervised learning task

video: http://www.sciencedirect.com/science/article/pii/
S0896627315010375

Roger Grosse CSC321 Lecture 1: Introduction 15 / 29

http://www.sciencedirect.com/science/article/pii/S0896627315010375
http://www.sciencedirect.com/science/article/pii/S0896627315010375

Reinforcement learning

An agent interacts with an environment (e.g. game of Breakout)

In each time step,

the agent receives observations (e.g. pixels) which give it information
about the state (e.g. positions of the ball and paddle)
the agent picks an action (e.g. keystrokes) which affects the state

The agent periodically receives a reward (e.g. points)

The agent wants to learn a policy, or mapping from observations to
actions, which maximizes its average reward over time

Roger Grosse CSC321 Lecture 1: Introduction 16 / 29

Reinforcement learning

DeepMind trained neural networks to play many different Atari games

given the raw screen as input, plus the score as a reward

single network architecture shared between all the games

in many cases, the networks learned to play better than humans (in
terms of points in the first minute)

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Roger Grosse CSC321 Lecture 1: Introduction 17 / 29

https://www.youtube.com/watch?v=V1eYniJ0Rnk

What are neural networks?

Most of the biological details aren’t essential, so we use vastly
simplified models of neurons.

While neural nets originally drew inspiration from the brain, nowadays
we mostly think about math, statistics, etc.

output bias

i'th input

i'th weighty

x1 x2 x3

output

weights

inputs

w1 w2 w3 y = g

�
b +

�

i

xiwi

�

nonlinearity

Neural networks are collections of thousands (or millions) of these
simple processing units that together perform useful computations.

Roger Grosse CSC321 Lecture 1: Introduction 18 / 29

What are neural networks?

Why neural nets?

inspiration from the brain

proof of concept that a neural architecture can see and hear!

very effective across a range of applications (vision, text, speech,
medicine, robotics, etc.)

widely used in both academia and the tech industry

powerful software frameworks (Torch, Theano, Caffe, TensorFlow) let
us quickly implement sophisticated algorithms

Roger Grosse CSC321 Lecture 1: Introduction 19 / 29

What are neural networks?

Some near-synonyms for neural networks
“Deep learning”

Emphasizes that the algorithms often involve hierarchies with many
stages of processing

Roger Grosse CSC321 Lecture 1: Introduction 20 / 29

“Deep learning”

Deep learning: many layers (stages) of processing

E.g. this network which recognizes objects in images:

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

(Krizhevsky et al., 2012)

Each of the boxes consists of many neuron-like units similar to the one on
the previous slide!

Roger Grosse CSC321 Lecture 1: Introduction 21 / 29

“Deep learning”

Here are the image regions that most strongly activate various neurons at
different layers of the network. (Zeiler and Fergus, 2014)

Higher layers capture more abstract semantic information.

Roger Grosse CSC321 Lecture 1: Introduction 22 / 29

What are neural networks?

Some near-synonyms for neural networks
“Deep learning”

Emphasizes that the algorithms often involve hierarchies with many
stages of processing

“Representation learning”

The algorithms typically map the raw data into some other space which
makes the relationships between different things more explicit

Roger Grosse CSC321 Lecture 1: Introduction 23 / 29

What is a representation?

How you represent your data determines what questions are easy to
answer.

E.g. a dict of word counts is good for questions like “What is the most
common word in Hamlet?”
It’s not so good for semantic questions like “if Alice liked Harry Potter,
will she like The Hunger Games?”

Roger Grosse CSC321 Lecture 1: Introduction 24 / 29

What is a representation?

Idea: represent words as vectors

TSNE

Thursday, 31 January, 13

Roger Grosse CSC321 Lecture 1: Introduction 25 / 29

What is a representation?

Mathematical relationships between vectors encode semantic
relationships between words

Measure semantic similarity using the dot product (or dissimilarity
using Euclidean distance)
Represent a web page with the average of its word vectors
Complete analogies by doing arithmetic on word vectors

e.g. “Paris is to France as London is to ”
France – Paris + London =

It’s very hard to construct representations like these by hand, so we
need to learn them from data

This is a big part of what neural nets do, whether it’s supervised,
unsupervised, or reinforcement learning!

Roger Grosse CSC321 Lecture 1: Introduction 26 / 29

What is a representation?

Mathematical relationships between vectors encode semantic
relationships between words

Measure semantic similarity using the dot product (or dissimilarity
using Euclidean distance)
Represent a web page with the average of its word vectors
Complete analogies by doing arithmetic on word vectors

e.g. “Paris is to France as London is to ”
France – Paris + London =

It’s very hard to construct representations like these by hand, so we
need to learn them from data

This is a big part of what neural nets do, whether it’s supervised,
unsupervised, or reinforcement learning!

Roger Grosse CSC321 Lecture 1: Introduction 26 / 29

Software frameworks

Array processing (NumPy)

vectorize computations (express them in terms of matrix/vector
operations) to exploit hardware efficiency

Neural net frameworks: Torch, Theano, Caffe, TensorFlow

automatic differentiation
compiling computation graphs
libraries of algorithms and network primitives
support for graphics processing units (GPUs)

For this course:

Python, NumPy
Autograd, a lightweight automatic differentiation package written by
Professor David Duvenaud and colleagues

Roger Grosse CSC321 Lecture 1: Introduction 27 / 29

Software frameworks

Why this class, and why Autograd?

So you know what do to if something goes wrong!

Debugging learning algorithms requires sophisticated detective work,
which requires understanding what goes on beneath the hood.

That’s why we derive things by hand in this class!

Roger Grosse CSC321 Lecture 1: Introduction 28 / 29

Next time

Next lecture: linear regression

Roger Grosse CSC321 Lecture 1: Introduction 29 / 29

