
Lecture 15: Exploding and Vanishing Gradients

Roger Grosse

1 Introduction

Last lecture, we introduced RNNs and saw how to derive the gradients using
backprop through time. In principle, this lets us train them using gradient
descent. But in practice, gradient descent doesn’t work very well unless
we’re careful. The problem is that we need to learn dependencies over long
time windows, and the gradients can explode or vanish.

We’ll first look at the problem itself, i.e. why gradients explode or vanish.
Then we’ll look at some techniques for dealing with the problem — most
significantly, changing the architecture to one where the gradients are stable.

1.1 Learning Goals

• Understand why gradients explode or vanish, both

– in terms of the mechanics of computing the gradients

– the functional relationship between the hidden units at different
time steps

• Be able to analyze simple examples of iterated functions, including
identifying fixed points and qualitatively determining the long-term
behavior from a given initialization.

• Know about various methods for dealing with the problem, and why
they help:

– Gradient clipping

– Reversing the input sequence

– Identity initialization

• Be familiar with the long short-term memory (LSTM) architecture

– Reason about how the memory cell behaves for a given setting
of the input, output, and forget gates

– Understand how this architecture helps keep the gradients stable

2 Why Gradients Explode or Vanish

Recall the encoder-decoder architecture for machine translation, shown again
in Figure 1. The encoder-decoder model was

introduced in Section 14.4.2.
It has to read an English sentence, store as much information

as possible in its hidden activations, and output a French sentence. The
information about the first word in the sentence doesn’t get used in the

1



Figure 1: Encoder-decoder model for machine translation (see 14.4.2 for
full description). Note that adjusting the weights based on the first in-
put requires the error signal to travel backwards through the entire path
highlighted in red.

predictions until it starts generating. Since a typical sentence might be
about 20 words long, this means there’s a long temporal gap from when it
sees an input to when it uses that to make a prediction. It can be hard
to learn long-distance dependencies, for reasons we’ll see shortly. In order
to adjust the input-to-hidden weights based on the first input, the error
signal needs to travel backwards through this entire pathway (shown in red
in Figure 1).

2.1 The mechanics of backprop

Now consider a univariate version of the encoder:

Assume we’ve already backpropped through the decoder network, so we
already have the error signal h(T ). We then alternate between the following
two backprop rules:1

h(t) = z(t+1)w

z(t) = h(t) φ′(z(t))

If we iterate the rules, we get the following formula:

h(1) = wT−1φ′(z(2)) · · ·φ′(z(T ))h(T )

=
∂h(T )

∂h(1)
h(T )

Hence, h(1) is a linear function of h(T ). The coefficient is the partial deriva-

tive ∂h(T )

h(1) . If we make the simplifying assumption that the activation func-
tions are linear, we get

∂h(T )

∂h(1)
= wT−1,

which can clearly explode or vanish unless w is very close to 1. For instance,
if w − 1.1 and T = 50, we get ∂h(T )/∂h(1) = 117.4, whereas if w = 0.9

1Review Section 14.3 if you’re hazy on backprop through time.

2



and T = 50, we get ∂h(T )/∂h(1) = 0.00515. In general, with nonlinear
activation functions, there’s nothing special about w = 1; the boundary
between exploding and vanishing will depend on the values h(t).

More generally, in the multivariate case,

∂h(T )

∂h(1)
=

∂h(T )

∂h(T−1) · · ·
∂h(2)

∂h(1)
.

This quantity is called the Jacobian. “Jacobian” is a general
mathematical term for the matrix
of partial derivatives of a
vector-valued function.

It can explode or vanish just like in
the univariate case, but this is slightly more complicated to make precise.
In the case of linear activation functions, ∂h(t+1)/∂h(t) = W, so

∂h(T )

∂h(1)
= WT−1.

This will explode if the largest eigenvalue of W is larger than 1, and vanish
if the largest eigenvalue is smaller than 1.

Contrast this with the behavior of the forward pass. In the forward
pass, the activations at each step are put through a nonlinear activation
function, which typically squashes the values, preventing them from blowing
up. Since the backwards pass is entirely linear, there’s nothing to prevent
the derivatives from blowing up.

2.2 Iterated functions

We just talked about why gradients explode or vanish, in terms of the
mechanics of backprop. But whenever you’re trying to reason about a
phenomenon, don’t go straight to the equations. Instead, try to think
qualitatively about what’s going on. In this case, there’s actually a nice
interpretation of the problem in terms of the function the RNN computes.
In particular, each layer computes a function of the current input and the
previous hidden activations, i.e. h(t) = f(x(t),h(t−1)). If we expand this
recursively, we get:

h(4) = f(f(f(h(1),x(2)),x(3)),x(4)). (1)

This looks a bit like repeatedly applying the function f . Therefore, we can
gain some intuition for how RNNs behave by studying iterated functions,
i.e. functions which we iterate many times.

Iterated functions can be complicated. Consider the innocuous-looking
quadratic function

f(x) = 3.5x (1− x). (2)

If we iterate this function multiple times (i.e. f(f(f(x))), etc.), we get some
complicated behavior, as shown in Figure 2. Another famous example of
the complexity of iterated functions is the Mandelbrot set:

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

3



Figure 2: Iterations of the function f(x) = 3.5x (1− x).

This is defined in terms of a simple mapping over the complex plane:

zn = z2n−1 + c (3)

If you initialize at z0 = 0 and iterate this mapping, it will either stay within
some bounded region or shoot off to infinity, and the behavior depends on
the value of c. The Mandelbrot set is the set of values of c where it stays
bounded; as you can see, this is an incredibly complex fractal.

It’s a bit easier to analyze iterated functions if they’re monotonic. Con-
sider the function

f(x) = x2 + 0.15.

This is monotonic over [0, 1]. We can determine the behavior of repeated
iterations visually:

Here, the red line shows the trajectory of the iterates. If the initial value is
x0 = 0.6, start with your pencil at x = y = 0.6, which lies on the dashed line.
Set y = f(x) by moving your pencil vertically to the graph of the function,
and then set x = y by moving it horizontally to the dashed line. Repeat
this procedure, and you should notice a pattern. There are some regions
where the iterates move to the left, and other regions where the move to

4



the right. Eventually, the iterates either shoot off to infinity or wind up at
a fixed point, i.e. a point where x = f(x). Fixed points are represented
graphically as points where the graph of x intersects the dashed line. Some
fixed points (such as 0.82 in this example) repel the iterates; these are called
sources. Other fixed points (such as 0.17) attract the iterates; these are
called sinks, or attractors. The behavior of the system can be summarized
with a phase plot:

Observe that fixed points with derivatives f ′(x) < 1 are sinks and fixed
points with f ′(x) > 1 are sources.

Even though the computations of an RNN are discrete, we can think of
them as a sort of dynamical system, which has various attractors:

– Geoffrey Hinton, Coursera

This figure is a cartoon of the space of hidden activations. If you start out
in the blue region, you wind up in one attractor, whereas if you start out
in the red region, you wind up in the other attractor. If you evaluate the
Jacobian ∂h(T )/∂h(1) in the interior of one of these regions, it will be close
to 0, since if you change the initial conditions slightly, you still wind up
at exactly the same place. But the Jacobian right on the boundary will be
large, since shifting the initial condition slightly moves us from one attractor
to the other.

To make this story more concrete, consider the following RNN, which
uses the tanh activation function:

Figure 3 shows the function computed at each time step, as well as the
function computed by the network as a whole. Think about how we can derive

the right-hand figure from the
left-hand one using the analysis
given above.

From this figure. you can
see which regions have exploding or vanishing gradients.

This behavior shows up even if we look at the gradients with respect
to parameters of the network. Suppose we define an input distribution and
loss function for this network; we’ll use squared error loss, but the details
aren’t important. Figure 4 shows the loss function for individual training
examples, as well as the cost function averaged over 1000 training examples.

5



Figure 3: (left) The function computed by the RNN at each time step,
(right) the function computed by the network.

Figure 4: (left) Loss function for individual training examples, (right) cost
function averaged over 1000 training examples.

Recall our discussion of features of the optimization landscape (plateaux,
ridges, etc.). This figure shows a new one, namely cliffs. In this case,
cliffs are a problem only for individual training examples; the cost function
averaged over 1000 examples is fairly smooth. Whether or not this happens
depends on the specifics of the problem.

3 Keeping Things Stable

Now that we’ve introduced the problem of exploding and vanishing gradi-
ents, let’s see what we can do about it. We’ll start with some simple tricks,
and then consider a fundamental change to the network architecture.

3.1 Gradient Clipping

First, there’s a simple trick which sometimes helps a lot: gradient clip-
ping. Basically, we prevent gradients from blowing up by rescaling them so
that their norm is at most a particular value η. I.e., if ‖g‖ > η, where g is
the gradient, we set

g← ηg

‖g‖
. (4)

6



This biases the training procedure, since the resulting values won’t actually
be the gradient of the cost function. However, this bias can be worth it if
it keeps things stable. The following figure shows an example with a cliff
and a narrow valley; if you happen to land on the face of the cliff, you
take a huge step which propels you outside the good region. With gradient
clipping, you can stay within the valley.

— Goodfellow et al., Deep Learning

3.2 Input Reversal

Recall that we motivated this whole discussion in terms of the difficulty
of learning long-distance dependencies, such as between the first word of
the input sentence and the first word of the output sentence. What makes
it especially tricky in translation is that all of the dependencies are long;
this happens because for similar languages like English and French, the
corresponding words appear in roughly the same order in both sentences,
so the gaps between input and output are all roughly the sentence length.
We can fix this by reversing the order of the words in the input sentence:

There’s a gap of only one time step between when the first word is read
and when it’s needed. This means that the network can easily learn the
relationships between the first words; this could allow it to learn good word
representations, for instance. Once it’s learned this, it can go on to the
more difficult dependencies between words later in the sentences.

3.3 Identity Initialization

In general, iterated functions can have complex and chaotic behavior. But
there’s one particular function you can iterate as many times as you like: the
identity function f(x) = x. If your network computes the identity function,
the gradient computation will be perfectly stable, since the Jacobian is
simply the identity matrix. Of course, the identity function isn’t a very
interesting thing to compute, but it still suggests we can keep things stable
by encouraging the computations to stay close to the identity function.

7



The identity RNN architecture2 is a kind of RNN where the activation
functions are all ReLU, and the recurrent weights are initialized to the
identity matrix. The ReLU activation function clips the activations to be
nonnegative, but for nonnegative activations, it’s equivalent to the identity
function. This simple initialization trick achieved some neat results; for
instance, it was able to classify MNIST digits which were fed to the network
one pixel at a time, as a length-784 sequence.

3.4 Long-Term Short Term Memory

We’ve just talked about three tricks for training RNNs, and they are all
pretty widely used. But the identity initialization trick actually gets at
something much more fundamental. That is, why is it a good idea for the
RNN to compute something close to the identity function? Think about how
a computer works. It has a very large memory, but each instruction accesses
only a handful of memory locations. All the other memory locations simply
keep their previous value. In other words, if the computer’s entire memory
is represented as one big vector, the mapping from one time step to the next
is very close to the identity function. This behavior is the most basic thing
we’d desire from a memory system: the ability to preserve information over
time until it’s needed.

Unfortunately, the basic RNN architectures we’ve talked about so far
aren’t very good at remembering things. All of the units we’ve covered so
far in the course consist of linear functions followed by a nonlinear activation
function:

y = φ(Wx + b). (5)

For some activation functions, such as logistic or tanh, this can’t even rep-
resent the identity mapping; e.g., in the network shown in Figure 3, each
time step computes a function fairly close to the identity, but after just 5
steps, you get a step function.

The Long-Term Short-Term Memory (LSTM) architecture was
designed to make it easy to remember information over long time periods
until it’s needed. The name refers to the idea that the activations of a
network correspond to short-term memory, while the weights correspond to
long-term memory. If the activations can preserve information over long
distances, that makes them long-term short-term memory.

The basic LSTM unit (called a block) has much more internal structure
than the units we’ve covered so far in this course. The architecture is shown
in Figure 5. Each hidden layer of the RNN will be composed of many
(e.g. hundreds or thousands) of these blocks.

• At the center is a memory cell, which is the thing that’s able to
remember information over time. It has a linear activation function,
and a self-loop which is modulated by a forget gate, which takes
values between 0 and 1; this means that the weight of the self-loop is
equal to the value of the forget gate.

• The forget gate is a unit similar to the ones we’ve covered previously;
it computes a linear function of its inputs, followed by a logistic ac-

2Le et al., 2015. A simple way to initialize recurrent networks of rectified linear units.

8



tivation function (which means its output is between 0 and 1). The
forget gate would probably be better called a “remember gate”, since
if it is on (takes the value 1), the memory cell remembers its previous
value, whereas if the forget gate is off, the cell forgets it.

• The block also receives inputs from other blocks in the network; these
are summed together and passed through a tanh activation function
(which squashes the values to be between -1 and 1). The connection
from the input unit to the memory cell is gated by an input gate,
which has the same functional form as the forget gate (i.e., linear-
then-logistic).

• The block produces an output, which is the value of the memory cell,
passed through a tanh activation function. It may or may not pass
this on to the rest of the network; this connection is modulated by the
output gate, which has the same form as the input and forget gates.

It’s useful to summarize various behaviors the memory cell can achieve
depending on the values of the input and forget gates:

input gate forget gate behavior

0 1 remember the previous value
1 1 add to the previous value
0 0 erase the value
1 0 overwrite the value

If the forget gate is on and the input gate is off, the block simply computes
the identity function, which is a useful default behavior. But the ability to
read and write from it lets it implement more sophisticated computations.
The ability to add to the previous value means these units can simulate a
counter; this can be useful, for instance, when training a language model,
if sentences tend to be of a particular length.

When we implement an LSTM, we have a bunch of vectors at each time
step, representing the values of all the memory cells and each of the gates.
Mathematically, the computations are as follows:

i(t)

f (t)

o(t)

g(t)

 =


σ
σ
σ

tanh

W

(
x(t)

h(t−1)

)
(6)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ g(t) (7)

h(t) = o(t) ◦ tanh(c(t)). (8)

Here, (6) uses a shorthand for applying different activation functions to
different parts of the vector. Observe that the blocks receive signals from
the current inputs and the previous time step’s hidden units, just like in
standard RNNs. But the network’s input g and the three gates i, o, and f
have independent sets of incoming weights. Then (7) gives the update rule
for the memory cell (think about how this relates to the verbal description
above), and (8) defines the output of the block.

For homework, you are asked to show that if the forget gate is on and
the input and output gates are off, it just passes the memory cell gradients

9



Figure 5: The LSTM unit.

10



through unmodified at each time step. Therefore, the LSTM architecture
is resistant to exploding and vanishing gradients, although mathematically
both phenomena are still possible.

If the LSTM architecture sounds complicated, that was the reaction of
machine learning researchers when it was first proposed. It wasn’t used
much until 2013 and 2014, when resesarchers achieved impressive results
on two challenging and important sequence prediction problems: speech-to-
text and machine translation. Since then, they’ve become one of the most
widely used RNN architectures; if someone tells you they’re using an RNN,
there’s a good chance they’re actually using an LSTM. There have been
many attempts to simplify the architecture, and one particular variant called
the gated recurrent unit (GRU) is fairly widely used, but so far nobody has
found anything that’s both simpler and at least as effective across the board.
It appears that most of the complexity is probably required. Fortunately,
you hardly ever have to think about it, since LSTMs are implemented as a
black box in all of the major neural net frameworks.

11


	Introduction
	Learning Goals

	Why Gradients Explode or Vanish
	The mechanics of backprop
	Iterated functions

	Keeping Things Stable
	Gradient Clipping
	Input Reversal
	Identity Initialization
	Long-Term Short Term Memory


