
Lecture 1: Introduction

Roger Grosse

This series of readings forms the lecture notes for the course CSC321,
“Intro to Neural Networks,” for undergraduates at the University of Toronto.
I’m aiming for it also to function as a stand-alone mini-textbook for self-
directed learners and for students at other universities. These notes are
aimed at students who have some background in basic calculus, probability
theory, and linear algebra, but possibly no prior background in machine
learning.

1 Motivation

1.1 Why machine learning?

Think about some of the things we do effortlessly on a day-to-day basis:
visually recognize people, places and things, pick up objects, understand
spoken language, and so on. How would you program a machine to do these
things? Unfortunately, it’s hard to give a step-by-step program, since we
have very little introspective awareness of the workings of our minds. How
do you recognize your best friend? Exactly which facial features do you
pick up on? AI researchers tried for decades to come up with computational
procedures for these sorts of tasks, and it proved frustratingly difficult.

Machine learning takes a different approach: collect lots of data, and
have an algorithm automatically figure out a good behavior from the data.
If you’re trying to write a program to distinguish different categories of
objects (tree, dog, etc.), you might first collect a dataset of images of each
kind of object, and then use a machine learning algorithm to train a model
(such as a neural network) to classify an image as one category or another.
Maybe it will learn to see in a way analogous to the human visual system,
or maybe it will come up with a different approach altogether. Either way,
the whole process can be much easier than specifying everything by hand.

Aside from being easier, there are lots of other reasons we might want
to use machine learning to solve a given problem:

• A system might need to adapt to a changing environment. For in-
stance, spammers are constantly trying to figure out ways to trick our
e-mail spam classifiers, so the classification algorithms will need to
constantly adapt.

• A learning algorithm might be able to perform better than its human
programmers. Learning algorithms have become world champions at
a variety of games, from checkers to chess to Go. This would be
impossible if the programs were only doing what they were explicitly
told to.

1



• We may want an algorithm to behave autonomously for privacy or
fairness reasons, such as with ranking search results or targeting ads.

Here are just a few important applications where machine learning al-
gorithms are regularly deployed:

• Detecting credit card fraud

• Determining when to apply a C-section

• Transcribing human speech

• Recognizing faces

• Robots learning complex behaviors

1.2 How is machine learning different from statistics?

A lot of the algorithms we cover in this course originally came from statistics:
linear regression, principal component analysis (PCA), maximum likelihood
estimation, Bayesian parameter estimation, and Expectation-Maximization
(EM). (Statisticians got there first because we had data before we had com-
puters.) Much of machine learning, from the most basic techniques to the
state-of-the-art algorithms presented at research conferences, is statistical
in flavor. It’s unsurprising that there should be overlap, since both fields
are fundamentally concerned with the question of how to learn things from
data.

What, then, is different about machine learning? Opinions will differ
on this question, but if I had to offer one rule of thumb, it’s this: statistics
is motivated by guiding human decision making, while machine learning
is motivated by autonomous agents. This means that, even when we talk
about the same algorithm, practitioners in the two fields are likely to ask
different questions. Statisticians might put more emphasis on being able to
interpret the results of an algorithm, or being able to rigorously determine
whether a certain observed pattern might have just happened by chance.
Machine learning practitioners might put more emphasis on algorithms that
can perform well in a variety of situations without human intervention. This
overlap in techniques, coupled with the differences in motivation, creates a
lot of awkwardness as practitioners in both fields will talk past each other
without realizing it.

1.3 Why a course on neural networks?

Neural networks are one particular approach to machine learning, very
loosely inspired by how the brain processes information. A neural network
is composed of a large number of units, each of which does very simple com-
putations, but which produce sophisticated behaviors in aggregate. There
are lots of other widely used approaches to machine learning, but this class
focuses on neural networks for several reasons:

• Neural nets are becoming very widely used in the software indus-
try. They underlie systems for speech recognition, translation, rank-
ing search results, face recognition, sentiment analysis, image search,
and many other applications. It’s an important tool to know.

2



• There are powerful software packages like Caffe, Theano, Torch, and
TensorFlow, which allow us to quickly implement sophisticated learn-
ing algorithms.

• Many of the important algorithms are much simpler to explain, com-
pared with other subfields of machine learning. This makes it possible
for undergraduates to quickly get up to speed on state-of-the-art tech-
niques in the field.

This class is very unusual among undergrad classes, in that it covers
modern research techniques, i.e. algorithms introduced in the last 5 years.
It’s pretty amazing that with less than a page of code, we can build learning
algorithms more powerful than the best ones researchers had come up with
as of 5 years ago.

In fact, these software packages make neural nets deceptively easy. One
might wonder, if you can implement a neural net in TensorFlow using a
handful of lines of code, why do we need a whole class on the subject?
The answer is that the algorithms generally won’t work perfectly the first
time. Diagnosing and fixing the problems requires careful detective work
and a sophisticated understanding of what’s going on beneath the hood.
In this class, we’ll work from the bottom up: we’ll derive the algorithms
mathematically, implement them from scratch, and only then look at the
out-of-the-box implementations. This will help us build up the depth of
understanding we need to reason about how an algorithm is behaving.

2 Types of machine learning

I said above that in machine learning, we collect lots of data, and then train
a model to learn a particular behavior from it. But what kind of data do
we collect? The answer will determine what sort of learning algorithm we’ll
apply to any given problem. Roughly speaking, there are three different
types of machine learning:

• In supervised learning, we have examples of the desired behavior.
For instance, if we’re trying to train a neural net to distinguish cars
and trucks, we would collect images of cars and trucks, and label each
one as a car or a truck.

• In reinforcement learning, we don’t have examples of the behav-
ior, but we have some method of determining how good a particular
behavior was — this is known as a reward signal. (By analogy, think
of training dogs to perform tricks.) One example would be training
an agent to play video games, where the reward signal is the player’s
score.

• In unsupervised learning, we have neither labels nor a reward sig-
nal. We just have a bunch of data, and want to look for patterns in
the data. For instance, maybe we have lots of examples of patients
with autism, and want to identify different subtypes of the condition.

This taxonomy is a vast oversimplification, but it will still help us to organize
the algorithms we cover in this course. Now let’s look at some examples
from each category.

3



2.1 Supervised learning

The majority of this course will focus on supervised learning. This is the
best-understood type of machine learning, because (compared with unsu-
pervised and reinforcement learning) supervised learning problems are much
easier to assign a mathematically precise formulation that matches what one
is trying to achieve. In general, one defines a task, where the algorithm’s
goal is to train a model which takes an input (such as an image) and
predicts a target (such as the object category). One collects a dataset
consisting of pairs of inputs and labels (i.e. true values of the target). A
subset of the data, called the training set, is used to train the model, and
a separate subset, called the test set, is used to measure the algorithm’s
performance. There are a lot of highly effective and broadly applicable su-
pervised learning algorithms, many of which will be covered in this course.

For several decades, image classification has been perhaps the pro-
totypical application of neural networks. In the late 1980s, the US Postal
Service was interested in automatically reading handwritten zip codes, so
they collected 9,298 examples of handwritten digits (0-9), given as 16 × 16
images, and labeled each one; the task is to predict the digit class from
the image. This dataset is now known as the USPS Dataset1. In the ter-
minology of supervised learning, we say that the input is the image, and
the target is the digit class. By the late 1990s, neural networks were good
enough at this task that they became regularly used to sort letters.

In the 1990s, researchers collected a similar but larger handwritten digit
dataset called MNIST2; for decades, MNIST has served as the “fruit fly” of
neural network research. I.e., even though handwritten digit classification
is now considered too easy a problem to be of practical interest, MNIST
has been used for almost two decades to benchmark neural net learning
algorithms. Amazingly, this classic dataset continues to yield algorithmic
insights which generalize to challenging problems of more practical interest.

A more challenging task is to classify full-size images into object cat-
egories, a task known as object recognition. The ImageNet dataset3

consists of 14 million images of nearly 22,000 distinct object categories. A
(still rather large) subset of this dataset, containing 1.2 million images in
1000 object categories, is currently one of the most important benchmarks
for computer vision algorithms; this task is known as the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). Since 2012, all of the best-
performing algorithms have been neural networks. Recently, progress on
the ILSVRC has been extremely rapid, with the error rate4 dropping from
25.7% to 5.7% over the span of a few years!

All of the above examples concerned image classification, where the goal
is to predict a discrete category for each image. A closely related task is
object detection, where the task is to identify all of the objects present in
their image, as well as their locations. I.e., the input is an image, and the
target is a listing of object categories together with their bounding boxes.

1http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
2http://yann.lecun.com/exdb/mnist/
3http://www.image-net.org/
4In particular, the top-5 error rate; the algorithm predicts 5 object categories, and

gets it right if any of the 5 is correct.

4

http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://yann.lecun.com/exdb/mnist/
http://www.image-net.org/


Other variants include localization, where one is given a list of object
categories and has to predict their locations, and semantic segmentation,
where one tries to label each pixel of an image as belonging to an object
category. There are a huge variety of different supervised learning problems
related to image understanding, depending on exactly what one is hoping
to achieve. The variety of tasks can be bewildering, but fortunately we can
approach most of them using very similar principles.

Neural nets have been applied in lots of areas other than vision. Another
important problem domain is language. Consider, for example, the problem
of machine translation. The task is to translate a sentence from one
language (e.g. French) to another language (e.g. English). One has available
a large corpus of French sentences coupled with their English translations; a
good example is the proceedings of the Canadian Parliament. Observe that
this task is more complex than image classification, in that the target is an
entire sentence. Observe also that there generally won’t be a unique best
translation, so it may be preferable for the algorithm to return a probability
distribution over possible translations, rather than a single translation. This
ambiguity also makes evaluation difficult, since one needs to distinguish
almost-correct translations from completely incorrect ones.

The general category of supervised learning problem where the inputs
and targets are both sequences is known as sequence-to-sequence learn-
ing. The sequences need not be of the same type. An important example
is speech recognition, where one is given a speech waveform and wants
to produce a transcription of what was said. Neural networks led to dra-
matic advances in speech recognition around 2010, and form the basis of
all of the modern systems. Caption generation is a task which combines
vision and language understanding; here the task is to take an image and
return a textual description of the image. The most successful approaches
are based on neural nets. Caption generation is far from a solved problem,
and the systems can be fun to experiment with, not least because of their
entertaining errors.5

2.2 Reinforcement Learning

The second type of learning problem is reinforcement learning. Here, one
doesn’t have labels of the correct behavior, but instead has a way of quanti-
tatively evaluating how good a behavior was; this is known as the reward
signal. Reinforcement learning problems generally involve an agent situ-
ated in an environment. In each time step, the agent has available a set of
actions which (either deterministically or stochastically) affect the state of
the agent and the environment. The goal is to learn a policy, determining
which action to perform depending on the state, in order to achieve has
high a reward as possible on average.

Throughout the history of AI, a lot of progress has been driven by game
playing. Over the years, AIs have come to defeat human champions in board
games of increasing complexity, including backgammon, checkers, chess,
and Go. In the case of Go, the success was achieved by a neural network
called AlphaGo. Most of these games involve playing against an opponent,

5http://deeplearning.cs.toronto.edu/i2t

5

http://deeplearning.cs.toronto.edu/i2t


or adversary; this adversarial setting is beyond the scope of this class.
However, single-player games can be formulated as reinforcement learning
problems. For instance, we will look at the example of training an agent
to play classic Atari games. The agent observes the pixels on the screen,
has a set of actions corresponding to the controller buttons, and receives
rewards corresponding to the score of the game. Neural net algorithms have
outperformed humans on many games, in the sense of being able to achieve
a high score in a short period of time.

2.3 Unsupervised Learning

The third type of machine learning, where one has neither labels of the
correct behavior nor a reward signal, is known as unsupervised learning.
Here, one simply has a collection of data and is interested in finding patterns
in the data. We will just barely touch upon unsupervised learning in this
class, because compared with supervised and reinforcement learning, the
principles are less well understood, the algorithms are more mathematically
involved, and one must account for a lot more domain-specific structure.

One of the most important types of unsupervised learning is distribu-
tion modeling, where one has an unlabeled dataset (such as a collection
of images or sentences), and the goal is to learn a probability distribution
which matches the dataset as closely as possible. In principle, one should be
able to generate from, or draw samples from, the distribution, and those
samples should be indistinguishable from the original data. Sometimes we
care about the samples themselves, e.g. if we want to generate images of
textures for graphics applications. Another important use of distribution
models is to resolve ambiguities; for instance, in speech recognition, “recog-
nize speech” may sound very similar to “wreck a nice beach,” but a good
distribution model ought to be able to tell us that the former is a more
likely explanation than the latter.

Another important use of unsupervised learning is to recover latent
structure, or high-level explanations that yield insight into the structure
underlying the data. One important example is clustering, where one is
interested in dividing a set of data points into clusters, where data points
assigned to the same cluster are similar, and data points assigned to differ-
ent clusters are dissimilar. Much fancier models are possible as well. For
instance, a biology lab was running behavior genetics experiments on mice,
and wanted to automatically analyze videos of mice to determine whether
one genetic variant was more likely to engage in a particular behavior than
another variant. If experts had explicitly labeled different behaviors, this
would be a supervised learning problem; however, the lab avoided doing this
because it would have introduced human biases into the interpretation. In-
stead, they ran an unsupervised learning algorithm to automatically analyze
mouse videos and group them into different categories of behaviors.

3 Neural nets and the brain

The neuron is the basic unit of processing in the brain. It has a broad,
branching tree of dendrites, which receive chemical signals from other neu-
rons at junctions called synapses, and convert these into electrical signals.

6



output bias

i'th input

i'th weighty

x1 x2 x3

output

weights

inputs

w1 w2 w3 y = g

�
b +

�

i

xiwi

�

nonlinearity

Figure 1: Simplified neuron-like processing unit.

The dendrites integrate these electrical signals in complex, nonlinear ways,
and if the combined signal is strong enough, the neuron generates an action
potential. This is an electrical signal that’s propagated down the neuron’s
axon, which eventually causes the neuron to release chemical signals at its
synapses with other neurons. Those neurons then integrate their incoming
signals, and so on.

In machine learning, we abstract away nearly all of this complexity, and
use an extremely simplified model of a neuron shown in Figure [[TODO:
]]. This neuron has a set of incoming connections from other neurons,
each with an associated strength, or weight. It computes a value, called
the pre-activation, which is the sum of the incoming signals times their
weights:

z =
∑

j

wjxj + b.

The scalar value b, called a bias, determines the neuron’s activation in the
absence of inputs. The pre-activation is passed through a nonlinearity φ
(also called an activation function) to compute the activation a = φ(z).
Examples of nonlinearities include the logistic sigmoid

φ(z) =
1

1 + e−z

and linear rectification

φ(z) =

{
z if z > 0
0 if z ≤ 0.

In summary, the activation is computed as

a = φ


∑

j

wjxj + b


 .

That’s it. That’s all that our idealized neurons do. Note that the whole
idea of a continuous-valued activation is biologically unrealistic, since a real
neuron’s action potentials are an all-or-nothing phenomenon: either they
happen or they don’t, and they do not vary in strength. The continuous-
valued activation is sometimes thought of as representing a “firing rate,” but
mostly we just ignore the whole issue and don’t even think about the rela-
tionships with biology. From now on, we’ll refer to these idealized neurons
using the more scientifically neutral term units, rather than neurons.

If the relationship with biology seems strained, it gets even worse when
we talk about learning, i.e. adapting the weights of the neurons. Most

7



modern neural networks are trained using a procedure called backprop-
agation, where each neuron propagates error signals backwards through
its incoming connections. Nothing analogous has been observed in actual
biological neurons. There have been some creative proposals for how bio-
logical neurons might implement something like backpropagation, but for
the most part we just ignore the issue of whether our neural nets are bio-
logically realistic, and simply try to get the best performance we can out of
the tools we have. (There is a separate field called theoretical neuroscience,
which builds much more accurate models of neurons, towards the goal of
understanding better how the brain works. This field has produced lots of
interesting insights, and has achieved accurate quantitative models of some
neural systems, but so far there doesn’t appear to be much practical benefit
to using more realistic neuronal models in machine learning systems.)

However, neural networks do share one important commonality with the
brain: they consist of a very large number of computational units, each of
which performs a rather simple set of operations, but which in aggregate
produce very sophisticated and complex behaviors. Most of the models
we’ll discuss in this course are simply large collections of units, each of
which computes a linear function followed by a nonlinearity.

Another analogy with the brain is worth pointing out: the brain is or-
ganized into hierarchies of processing, where different brain regions encode
information at different levels of abstraction. Information processing starts
at the retina of the eye, where neurons compute simple center-surround
functions of their inputs. Signals are passed to the primary visual cor-
tex, where (to vastly oversimplify things) cells detect simple image features
such as edges. Information is passed through several additional “layers” of
processing, each one taking place in a different brain region, until the in-
formation reaches areas of the cortex which encode things at a high level of
abstraction. For instance, individual neurons in the infero-temporal cortex
have been shown (again, vastly ovsersimplifying) to encode the identities of
objects.

In summary, visual information is processed in a series of layers of in-
creasing abstraction. This inspired machine learning researchers to build
neural networks which are many layers deep, in hopes that they would
learn analogous representations where higher layers represent increasingly
abstract features. In the last 5 years or so, very deep networks have indeed
been found to achieve startlingly good performance on a wide variety of
problems in vision and other application areas; for this reason, the research
area of neural networks is often referred to as deep learning. There is
some circumstantial evidence that deep networks learn hierarchical repre-
sentations, but this is notoriously difficult to analyze rigorously.

4 Software

There are a lot of software tools that make it easy to build powerful and
sophisticated neural nets. In this course, we will use the programming lan-
guage Python, a friendly but powerful high-level language which is widely
used both in introductory programming courses and a wide variety of pro-
duction systems. Because Python is an interpreted language, executing a

8



line of Python code is very slow, perhaps hundreds of times slower than the
C equivalent. Therefore, we never write algorithms directly using for-loops
in Python. Instead, we vectorize the algorithms by expressing them in
terms of operations on matrices and vectors; those operations are imple-
mented in an efficient low-level language such as C or Fortran. This allows
a large number of computational operations to be performed with minimal
interpreter overhead. In this course, we will use the NumPy library, which
provides an efficient and easy-to-use array abstraction in Python.

Ten years ago, most neural networks were implemented directly on top
of a linear algebra framework like NumPy, or perhaps a lower level pro-
gramming language when efficiency was especially critical. More recently,
a variety of powerful neural net frameworks have been developed, including
Torch, Caffe, Theano, and TensorFlow. These frameworks make it easy
to quickly implement a sophisticated neural net model. Here are some of the
features provided by some or all of these frameworks (we’ll use TensorFlow
as an example):

• Automatic differentiation. If one implements a neural net directly
on top of NumPy, much of the implementational work involves writing
procedures to compute derivatives. TensorFlow automatically con-
structs routines for computing derivatives which are generally at least
as efficient as the ones we would have written by hand.

• Compiling computation graphs. If we implement a network in
NumPy, a lot of time is wasted allocating and deallocating memory
for matrices. TensorFlow takes a different approach: you first build
a graph defining the network’s computation, and TensorFlow figures
out an efficient strategy for performing those computations. It handles
memory efficiently and performs some other code optimizations.

• Libraries of algorithms and network primitives. Lots of differ-
ent neural net primitives and training algorithms have been proposed
in the research literature, and many of these are made available as
black boxes in TensorFlow. This makes it easy to iterate with differ-
ent choices of network architecture and training algorithm.

• GPU support. While NumPy is much faster than raw Python, it’s
not nearly fast enough for modern neural nets. Because neural nets
consist of a large collection of simple processing units, they natu-
rally lend themselves to parallel computation. Graphics processing
units (GPUs) are a particular parallel architecture which has been
especially powerful in training neural nets. It can be a huge pain to
write GPU routines at a low level, but TensorFlow provides an easy
interface so that the same code can run on either a CPU or a GPU.

For this course, we’ll use a lightweight automatic differentiation library
called Autograd. This will give you experience with the style of program-
ming used in frameworks like TensorFlow, but it’s much simpler, so you will
be able to understand how it actually works. After you finish this course,
it will be easy for you to pick up any of the major neural net frameworks.

9


	Motivation
	Why machine learning?
	How is machine learning different from statistics?
	Why a course on neural networks?

	Types of machine learning
	Supervised learning
	Reinforcement Learning
	Unsupervised Learning

	Neural nets and the brain
	Software

