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Today

e Finishing Principal Component Analysis (PCA)

» Last time: key linear algebra concepts, overview of the algorithm
itself
» Today: why the algorithm works

e Two generalizations of PCA

» Matrix completion
» Autoencoders
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Recap: PCA

@ Summarize data by projecting onto a low-dimensional subspace
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First principal component

Image credit: Elements of Statistical Learning

@ Some benefits of a low-dimensional representation

» Reduce memory and computation costs
» Interpretability, visualization
» Generalization
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Recap: PCA

Summary for a given point x:
1. Subtract mean: x — f4

2. Project on §: UU' (x — f1), where columns of U are unit eigenvectors
for largest K eigenvalues of 3 (K directions of highest variance)

3. Add back mean: i+ UU" (x — f1)
The reconstruction is % = 1 + Uz = o + UU” (x — f1)
Here, z = UT(x — [1) is a lower dimensional representation of x.

And that’s it! We’ve done Principal Component Analysis (PCA)!

@ Let’s now do this again in a bit more detail...
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Euclidean projection

Projection onto a 1-D subspace

S © Subspace S is the line along the

P unit vector u

» {u} is a basis for S: any point in
S can be written as zu for some
z.

e Projection of x on S is denoted by Projs(x)
o Recall: x'u = ||x||||ul cos(8) = ||x|| cos(6)
o Projs(x)= x'u - u = [|%]|u

-~
length of proj direction of proj
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General subspaces

e How to project onto a K-dimensional subspace?

» Idea: choose an orthonormal basis {uy, uy, -+, ug} for S (i.e. all
unit vectors and orthogonal to each other)

» Project onto each unit vector individually (as in previous slide), and
sum together the projections.

e Mathematically, the projection is given as:
K

. T
Projs(x) = Zziui where z; = x u;.
i=1

e In vector form:

Projs(x) = Uz where z; = U'x
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Projection onto a Subspace

@ So far, we assumed the subspace passes through 0.

o In mathematical terminology, the “subspaces” we want to project
onto are really affine spaces, and can have an arbitrary origin f.

“,‘).\‘ i:Uz-}fﬁ:zlu1+22ug+ﬁ

u:\/’ \ z=U"(x— 1)

@ In machine learning, X is also called the reconstruction of x.

@ z is its representation, or code.
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Projection onto a Subspace

o If we have a K-dimensional subspace in a
D-dimensional input space, then x € R”
K
and z € R™.

o If the data points x all lie close to their
reconstructions, then we can approximate
distances, etc. in terms of these same )
operations on the code vectors z. e

o If K << D, then it’s much cheaper to work \
with z than x. u,‘\/, i
o A mapping to a space that’s easier to \ a
manipulate or visualize is called a “
representation, and learning such a
mapping is representation learning.

e Mapping data to a low-dimensional space is
called dimensionality reduction.
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Learning a Subspace

e How to choose a good subspace S?

» Origin £ is the empirical mean of the data
» Need to choose a D X K matrix U with orthonormal columns.

@ Two criteria:
» Minimize the reconstruction error:

1 N . .
min 3 3 [l - )7
i=1

» Maximize the variance of reconstructions: Find a subspace where
data has the most variability.

1 (1) a2
mgXNgIIX - il

» Note: The data and its reconstruction have the same means
(exercise)!
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Learning a Subspace

@ These two criteria are equivalent! I.e., we’ll show
LS @) 2 1 S(6) .2
& 2 ==V = const — 5 ) (1% -
i=1 i
o Recall ) = o + Uz and 2” = U (xV) - ).

@ Observation 1: Because the columns of U are orthogonal, U'U-= I, so
- A2 2 T, T T 2
Ix - pll” = [|Uz||" =2 U Uz =2z z=|z||".

= norm of centered reconstruction is equal to norm of representation.
(If you draw it, this is obvious).
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Pythagorean Theorem
o Observation 1: ||5((") - ﬂ”Q = ||z(i)||2

» Variance of reconstructions is equal to variance of code vectors:
MAORPTE i) 112 . ;
% 2 ”X(l) - p” = % Y. ||Z(l)|| (exercise % Y, 7\ = 0)

e Observation 2: orthogonality of £ — jy and £ - x®

(Two vectors a, b are orthogonal <= a b =0)

o Recall X = o+ UUT(X(i) —[).

=(x" - @)"UU (- x" +uUT(x" - @)
=(x"-p)'UUT (p-x") + (x7-p)"UUT (x7 - 1)

x@
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Pythagorean Theorem

The Pythagorean Theorem tells us:

%Y =l + 11 = %) = [|x® - al*  for each i

By averaging over data and from observation 2, we obtain

[0 2, Lo ) _ (02
Nan ol +WZ”X - x|

projected variance reconstruction error
N
; 1 (G) 12
S =N 1= = £l
=1

constant

Therefore,
projected variance = constant — reconstruction error

Maximizing the variance is equivalent to minimizing the reconstruction error!
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize
the reconstruction error, is called principal component analysis (PCA).

e Consider the empirical covariance matrix:

L1 & (i)
E:N;x — ) (x" -

o Recall: 3 is symmetric and positive semidefinite.
o The optimal PCA subspace is spanned

by the top K eigenvectors of X.

» More precisely, choose the first K of

any orthonormal eigenbasis for 3.

» The general case is tricky, but we’ll
show this for K = 1.

@ These eigenvectors are called principal

components, analogous to the
principal axes of an ellipse.
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Supplement: Deriving PCA

e For K =1, we are fitting a unit vector u, and the code is a scalar
20 = uT(X(l) — ft). Let’s maximize the projected variance. From

observation 1, we have

1 @) a2 _ 1 W2 _ 1 T, (1) A2
NZIIX ol -Ng[z ] —Ng(u (x"” = @)

1 Y i i N

=¥ Y ' (x - p) " - ) (a'b)’=a"bb'a
i=1

TS0 @) T

=u {NZ(x’ - (x" = 1) }u
i=1

=u' Su
= uTQAQTu Spectral Decomposition > = QAQT
=a'Aa for a = QTu
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Supplement: Deriving PCA

. T D 2 T

o Maximize a Aa = ijl Aja; fora=Q u.
» This is a change-of-basis to the eigenbasis of X.

o Assume the \; are in sorted order, A\; = Ao, = ...

@ Observation: since u is a unit vector, then by unitarity, a is also a
.tt_T_TQQT_T.Zg_1

unit vector: a a =u u=u u ie, ) a;=1
e By inspection, set a; = £1 and a; = 0 for j # 1.

e Hence, u = Qa = q; (the top eigenvector).

o A similar argument shows that the kth principal component is the
kth eigenvector of 3.
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Decorrelation

o Interesting fact: the dimensions of z are decorrelated. For now, let
Cov denote the empirical covariance.

Cov(z) = Cov(U " (x - p))

=U' Cov(x)U

-U'sU

= UTQAQTU > spectral decomposition
=(I 0)A ((I)) > by orthogonality

= top left K X K block of A

o If the covariance matrix is diagonal, this means the features are
uncorrelated.
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Recap

Recap:
e Dimensionality reduction aims to find a low-dimensional
representation of the data.
e PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction
error.

@ The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

o PCA gives a set of decorrelated features.
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Applying PCA to faces

Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

ool slpigh 4 it el el s

PCA for pre-processing: can apply classifier to latent representation

» Original data is 361 dimensional

» For face recognition PCA with 3 components obtains 79% accuracy
on face/non-face discrimination on test data vs. 76.8% for a
Gaussian mixture model (GMM) with 84 states. (We'll cover
GMMs later in the course.)

@ Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images (“eigenfaces”)
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Applying PCA to digits

reconstructed with 2 bases reconstructed with 10 bases

E

reconstructed with 100 bases reconstructed with 506 bases

BEEEERE] =
BEEBEA.
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder

Intro ML (T CSC311-Lec9 21 /47



Some recommender systems in action

<« C & hitps://www.amazon.ca/?ref =nav_signin& * G s * e 0 EH® CHS e
Apps H Bookmarks () Version Control wi.. § The latest Sci-Hu.. W Daylight Theory: S.. [J A Guide to Creatin. How doss physics... e Griled Steak Taco... 5 arXiv:0707.2071v2. »
—————

Inspired by your browsing history see more

Your recently viewed items and featured recommendations
Inspired by your browsing history Page 10f8

Pixel 2XL Case, Google ~ Pixel 2XL Case, Google ~ Google Pixel 2 XL Screen  Pixel 2 XL Case, Google ~ VicTsing M UGREEN Active Micro AmazonBasics Nylon
Pixel 2 XL Case, Spigen Pixel 2 XL Case, Spigen Protector [Not Glass][2-  Pixel 2 XL Case, Spigen (Thunderbolt Port HDMI to HDMI VGA Video  Braided USB A to
Neo Hybrid - Flexible Inner  Thin Fit - Premium Matte  Pack], IQ Shield LiQuidSkin  Rugged Armor - Resilient  Compatible) to Converter Adapterwith  Lightning Compatible
TPU and Reinforced.. Finish Coating for... Full Coverage Screen Carbon Fiber Design... HDMI/DVI/VGA Male to...  3.5mm Audio Jackand...  Cable - Apple MF...
Al Ardryy 134 FR vy 143 Protector for Google... HA R 325 R vr 306 Ry 64 P e dr s 402
CON$ 2099 prime CON$ 15.99 prime CDN$ 27.16 CDN$ 15.99 vprime CDN$ 16.99 vprime CON$ 25.49 prime CON$ 1299 prime

Ideally recommendations should combine global and seasonal interests, look at
your history if available, should adapt with time, be coherent and diverse, etc.
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Some recommender systems in action

1GG E
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The Netflix problem

User | Movie Rating

& Thor * Yok kX
& Chained * Kk kK
& Frozen * % ok 3 X
Chained * kK kK&
Bambi * % % % %
&) Titanic * % Kk K %
© Goodfellas | % % % % %
© Dumbo * Kk Kk K %
o Twilight * Kk K ok K
@ Frozen * %k k Kk K
@ Tangled * % K A %

Movie recommendation: Users watch movies and rate them out of 5.

Because users only rate a few items, one would like to infer their
preference for unrated items
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Netflix Prize
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PCA as a Matrix Factorization

@ Recall PCA: project data onto a low-dimensional subspace defined
by the top eigenvalues of the data covariance

e Today we consider a generalization, matrix factorizations

» view PCA as a matrix factorization problem

» extend to matrix completion, where the data matrix is only
partially observed

» extend to other matrix factorization models, which place different
kinds of structure on the factors
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PCA as Matrix Factorization

o Recall PCA: each input vector x e R is approximated as
[+ Uz(z),
(@)

xM =z = py U

DxK

where f1 = % Y x is the data mean, U € R is the orthogonal

basis for the principal subspace, and 2" € R is the code vector,
~(4) D . (i) . L
and x'’ € R™ is x'’’s reconstruction or approximation.

o Assume for simplicity that the data is centered: [t = 0. Then, the
approximation looks like

MONGFIONIE § SO}
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PCA as Matrix Factorization

e PCA(on centered data): input vector x s approximated as Uz
<D < ug®
@ Write this in matrix form, we have X = ZU" where X and Z are

matrices with one row per data point

(]! [«
(2)7T (2)1T

X=| XD | er™P qng z=| 271 | gk
[XU{’)]T [Z(]\})]T

o Can write the squared reconstruction error as
N (@) (@) 2 T2
> 1" - uz?)P = X - Z2U ||,
i=1

e || - || denotes the Frobenius norm:
2 T2 2 .9
IV = 1Y TIE = ui = 3 111
1] i
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PCA as Matrix Factorization

e So PCA is approximating X = ZUT, or equivalently x"~Uz".
X7 U YAl
[
i
— Nv
D T D
one code
vector
_ N — —K—
one principal
component

e Based on the sizes of the matrices, this is a rank- K approximation.

e Since U was chosen to minimize reconstruction error, this is the
. . . . T T2
optimal rank-K approximation, in terms of error ||X ' —UZ ||z.
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Supplement: Singular-Value Decomposition (SVD)

This has a close relationship to the Singular Value Decomposition
(SVD) of X which is a matrix factorization technique. Consider an
N x D matrix X € RV*” with SVD

X =QSU’
Properties:

e Q, S, and U’ provide a real-valued matrix factorization of X.

e Q is a N X D matrix with orthonormal columns, QTQ =1p,
where Ip is the D X D identity matrix.

o U is an orthonormal D X D matrix, U' =UL

e Sis a D x D diagonal matrix, with non-negative singular values,
$1,89,...,Sp, on the diagonal, where the singular values are
conventionally ordered from largest to smallest.

Note that standard SVD notation is X = UDV'. We are using X = QSU-r
for notational convenience.
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Matrix Completion

o We just saw that PCA gives the optimal low-rank matrix
factorization to a matrix X.

e Can we generalize this to the case where X is only partially
observed?
» A sparse 1000 X 1000 matrix with 50,000 observations (only 5%
observed).
» A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.
» Unfortunately, no closed form solution.
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The Netflix problem

Movie recommendation: Users watch movies and rate them as good or

bad.

User | Movie Rating

& Thor * % K %
& Chained * ok %
& Frozen * Kk Kk %
Chained * ok ok Kk %
= Bambi * Kk Kk K &
© Titanic * %k ok k%
(@] Goodfellas | % % % % *
@] Dumbo * % %k Kk Kk
5] Twilight * ok % %
) Frozen * % ok Kk Kk
2 Tangled * % e %

Because users only rate a few items, one would like to infer their

preference for unrated items
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Matrix Completion

Matrix completion problem: Transform the table into a N users by M movies
matrix R

Rating matrix

@ Data: Users rate some movies.
Ruser,movie~ Very sparse

@ Task: Predict missing entries,

3 - v e i.e. how a user would rate a

movie they haven’t previously
? ? ? . ? ? rated
o o Evaluation Metric: Squared
Newall 72212221 error (used by Netflix
I R I Competition). Is this a
S < reasonable metric?
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Matrix Completion

@ In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

e That is, we seek representations for movies and users as vectors in
R* that can ultimately be translated to ratings.

e For simplicity, we can associate these factors (i.e. the dimensions
of the vectors) with idealized concepts like
» comedy
» drama
» action
» But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?
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Matrix Completion

@ Let the representation of user i in the K-dimensional space be u; and
the representation of movie j be z;

» Intuition: maybe the first entry of u; says how much the user likes
horror films, and the first entry of z; says how much movie j is a
horror film.

@ Assume the rating user ¢ gives to movie j is given by a dot product:
T
R =u; z;

@ In matrix form, if:

U= : and Z' = Z1 ... Z)p

then: R =~ UZ'

@ This is a matrix factorization problem!
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Matrix Completion

o Recall PCA: To enforce X' = UZT, we minimized
. T T2 T 2
min X7 - UZ [l = ) ()i - i 2)
/L?J

where u; and z; are the i-th rows of matrices U and Z,
respectively.

e What’s different about the Netflix problem?

» Most entries are missing!
» We only want to count the error for the observed entries.

Intro ML (UofT) CSC311-Lec9 36 /47



Matrix Completion

@ Let O = {(n,m): entry (n,m) of matrix R is observed}
@ Using the squared error loss, matrix completion requires solving

min% Z (Rij—u;rzj)z
U2 2 i heo

@ The objective is non-convex in U and Z jointly, and in fact it’s generally
NP-hard to minimize the above cost function exactly.

@ As a function of either U or Z individually, the problem is convex and
easy to optimize. We can use coordinate descent, just like with K-means
and mixture models!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix U
and optimize Z, and so on until convergence.
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Alternating Least Squares

e Want to minimize the squared error cost with respect to the factor
U. (The case of Z is exactly symmetric.)

o We can decompose the cost into a sum of independent terms:

Y (Ry-uln) =) Y (Ry-ul)

(4,5)€0 i g (4,5)€0

only depends on u;

This can be minimized independently for each u;.

@ This is a linear regression problem in disguise. Its optimal solution
is:

-1

T
u; = Z Z;Z; Z R;;z;

J:(i,5)€0 3:(4,5)€0
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Alternating Least Squares

ALS for Matrix Completion problem
1. Initialize U and Z randomly
2. repeat until convergence

3. fori=1,..,N do

-

T -1
u; = (Zj:(i,j)eO Z;Z; ) Zj:(i,j)eo R;jz;
5. for j=1,..,M do

. Ty 1
6. z; = (Zi:(i,j)EO wu; ) Y iijeo Rigti
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder
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Autoencoders

@ An autoencoder is a feed-forward neural net whose job is to take
an input x and predict x.

o To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

784 units

100 units

reconstruction

decoder

20 units

input 784 units
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Linear Autoencoders

Why autoencoders?

e Map high-dimensional data to two dimensions for visualization

o Learn abstract features in an unsupervised way so you can apply
them to a supervised task

» Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss. X ‘

D units ‘

A

Wg decoder
Z | Kunits
o This network computes X = WoWx, which W [}
is a linear function. !
o If K = D, we can choose W5 and W/ such
that WoWj is the identity matrix. This isn’t
very interesting.
@ But suppose K < D:

L(x,%) = [|x - x||?

encoder

X ‘ D units ‘

» W, maps x to a K-dimensional space, so it’s doing dimensionality
reduction.
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Linear Autoencoders

@ Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of Wy. This is
because X = Wz

o We saw that the best possible (min error) K-dimensional linear
subspace in terms of reconstruction error is the PCA subspace.

@ The autoencoder can achieve this by setting Wy = U' and
W2 =U.

@ Therefore, the optimal weights for a linear autoencoder are just
the principal components!

X ‘ D units ‘
A
U decoder
Z | Kunits
A
UT encoder
X ‘ D units ‘
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Nonlinear Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

o This manifold is the image of the decoder.

e This is a kind of nonlinear dimensionality reduction.

100 units

100 units
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Nonlinear Autoencoders

o Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

D /&3 4s &b QR
B / ; % LI S- &-?' d q zg-el::)auto

0 /& 3 4 5 L7 5 Q B
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup

articles. They’re color-coded by topic, but the algorithm wasn’t given
the labels.

Interbank Markets Monetary/Economic
S Y -
%

-

Disasters and
Accidents

LR ]

- % e
Leading Ecnomic . A 8 T~ ﬁ_ Legal/Judicial
Indicators TR et e W - 3 !%'{N! e
; -, " i -
e i Government

Accounts/ .

Borrowings
Earnings
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