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Recap

Last week took a probabilistic perspective on parameter estimation.

We modeled a biased coin as a Bernoulli random variable with parameter
θ, which we estimated using:

I maximum likelihood estimation:
θ̂ML = maxθ p(D | θ)

I expected Bayesian posterior:
E[θ | D] where p(θ | D) ∝ p(θ)p(D | θ) by Bayes’ Rule.

I Maximum a-posteriori (MAP) estimation:

θ̂MAP = arg maxθ p(θ | D)

We also saw parameter estimation in context of a Näıve Bayes classifier.

Today we will continuing developing the probabilistic perspective:

I Gaussian Discriminant Analysis: Use Gaussian generative model of
the data for classification

I Principal Component Analysis: Simplify a Gaussian model by
projected it onto a lower dimensional subspace
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Gaussian Discriminant Analysis

Generative model for classification

Instead of trying to separate classes, try to model what each class
“looks like”: p(x | t = k).

Recall p(x | t = k) may be very complex for high dimensional data:

p(x1, · · · , xd, t) = p(x1|x2, · · · , xd, t) · · · p(xd−1|xd, t)p(xd, t)

Naive bayes used a conditional independence assumption. What
else could we do? Choose a simple distribution.

Next, we will discuss fitting Gaussian distributions to our data.
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Classification: Diabetes Example

Observation per patient: White blood cell count & glucose value.

p(x | t = k) for each class is shaped like an ellipse
=⇒ we model each class as a multivariate Gaussian
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Univariate Gaussian distribution

Recall the Gaussian, or normal,
distribution:

N (x;µ, σ2) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
The Central Limit Theorem says
that sums of lots of independent
random variables are
approximately Gaussian.

In machine learning, we use
Gaussians a lot because they make
the calculations easy.
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Multivariate Data

Multiple measurements (sensors)

D inputs/features/attributes

N instances/observations/examples

X =


[x(1)]>

[x(2)]>

...

[x(N)]>

 =


x
(1)
1 x

(1)
2 · · · x

(1)
D

x
(2)
1 x

(2)
2 · · · x

(2)
D

...
...

. . .
...

x
(N)
1 x

(N)
2 · · · x

(N)
D


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Multivariate Mean and Covariance

Mean

µ = E[x] =

µ1

...
µd


Covariance

Σ = Cov(x) = E[(x− µ)(x− µ)>] =


σ2
1 σ12 · · · σ1D

σ12 σ2
2 · · · σ2D

...
...

. . .
...

σD1 σD2 · · · σ2
D



The statistics (µ and Σ) uniquely define a multivariate Gaussian (or
multivariate Normal) distribution, denoted N (µ,Σ) or N (x;µ,Σ)

I This is not true for distributions in general!
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Multivariate Gaussian Distribution

Normally distributed variable x ∼ N (µ,Σ) has distribution:

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
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Gaussian Intuition: (Multivariate) Shift + Scale

Recall that in the univariate case, all normal distributions are shaped
like the standard normal distribution

The densities are related to the standard normal by a shift (µ), a scale
(or stretch, or dilation) σ, and a normalization factor
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Gaussian Intuition: (Multivariate) Shift + Scale

The same intuition applies in the multivariate case.

We can think of the multivariate Gaussian as a shifted and “scaled”
version of the standard multivariate normal distribution.

I The standard multivariate normal has µ = 0 and Σ = I

Multivariate analog of the shift is simple: it’s a vector µ

But what about the scale?

I In the univariate case, the scale factor was the square root of the
variance: σ =

√
σ2

I But in the multivariate case, the covariance Σ is a matrix!

Does Σ
1
2 exist, and can we scale by it?
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Multivariate Scaling (Intuitive) (optional draw-on slide for intuition)

We call a matrix “positive definite” if it scales the space in orthogonal
directions. The univariate analog is positive scalar α > 0.
Consider, e.g., how these two matrices transform the orthogonal vectors:

Consider
matrix:

(
2 0
0 0.5

) (
1 0.5

0.5 1

)
Consider
action on:

(
1
0

)
⊥
(

0
1

) (
1
1

)
⊥
(

1
−1

)

Draw action
on slide:

Notice: both matrices are symmetric!
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Multivariate Scaling (Formal) (details optional)

We summarize some definitions/results from linear algebra (without proof).
Knowing them is optional, but they may help with intuition (esp. for PCA).

Definition. Symmetric matrix A is positive semidefinite if x>Ax ≥ 0 for all

non-zero x. It is positive definite if x>Ax > 0 for all non-zero x.

I Any positive definite matrix is positive semidefinite.
I Positive definite matrices have positive eigenvalues, and positive

semidefinite matrices have non-negative eigenvalues.
I For any matrix X, X>X and XX> are positive semidefinite.

Theorem (Unique Positive Square Root). Let A be a positive semidefinite
real matrix. Then there is a unique positive semidefinite matrix B such that

A = B>B = BB. We call A
1
2 , B the positive square root of A.

Theorem (Spectral Theorem). The following are equivalent for A ∈ Rd×d:

1. A is symmetric.
2. RD has an orthonormal basis consisting of the eigenvectors of A.
3. There exists orthogonal matrix Q and diagonal matrix Λ such that

A = QΛQT . This is called the spectral decomposition of A.
I The columns of Q are (unit) eigenvectors of A.
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Properties of Σ

Key properties of Σ:

1. Σ is positive semidefinite (and therefore symmetric).

2. For a distribution with density, Σ is positive definite.

Other properties (optional / for reference):

3. Σ = E[xx>]− µµ> (generalizes Var(x) = E[x2]− µ2))

4. Cov(Ax + b) = AΣA> (generalizes Var(ax+ b) = a2 Var(x))

So here is the “scale” intuition:

For positive definite Σ, consider its unique positive square root Σ
1
2 .

Σ
1
2 is also positive definite, so by the Real Spectral Theorem, it “scales”

the space in orthogonal directions (its eigenvectors) by its eigenvalues.

So we can think of N (µ,Σ) as N (0, I) shifted by µ and “scaled” by Σ
1
2 !

I Note that if Σ = QΛQT , Σ
1
2 = QΛ

1
2 QT

Lets see some examples...
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ = 0.5

(
1 0
0 1

)
Σ = 2

(
1 0
0 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
2 0
0 1

)
Σ =

(
1 0
0 2

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5

0.5 1

)
Σ =

(
1 0.8

0.8 1

)
= Q1

(
1.5 0.
0. 0.5

)
Q>1 = Q2

(
1.8 0.
0. 0.2

)
Q>2

Test your intuition: Does Q1 = Q2?

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5

0.5 1

)
Σ =

(
1 −0.5
−0.5 1

)
= Q1

(
1.5 0.
0. 0.5

)
Q>1 = Q2

(
λ1 0.
0. λ2

)
Q>2

Test your intuition: Does Q1 = Q2? What are λ1 and λ2?

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian
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Bivariate Gaussian
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Gaussian Maximum Likelihood

Suppose we want to model the distribution of highest and lowest
temperatures in Toronto in March, and we’ve recorded the following
observations /

(-2.5,-7.5) (-9.9,-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution with mean µ, and
covariance Σ. We want to estimate these using data.

Log-likelihood function:

`(µ,Σ) = log

N∏
i=1

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=

N∑
i=1

log

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=
N∑
i=1

− log(2π)d/2︸ ︷︷ ︸
constant

− log |Σ|1/2 − 1

2
(x(i) − µ)TΣ−1(x(i) − µ)

Optional intuition building: why does |Σ|1/2 show up in the Gaussian density p(x)? Hint:determinantisproductofeigenvalues
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Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

0 =
d`

dµ
= −

N∑
i=1

d

dµ

1

2
(x(i) − µ)TΣ−1(x(i) − µ)

= −
N∑
i=1

Σ−1(x(i) − µ) = 0

Here we use the identity ∇xx>Ax = 2Ax
(see the multivariable calculus note from Lecture 2).

Solving we get µ̂ = 1
N

∑N
i=1 x(i). In general, “hat” means estimator

This is just the sample mean of the observed values, or the
empirical mean.

Intro ML (UofT) CSC311-Lec8 21 / 44



Gaussian Maximum Likelihood

We can do a similar calculation for the covariance matrix Σ (we
skip the details).

Setting the partial derivatives to zero, just like before, we get:

0 =
∂`

∂Σ
=⇒ Σ̂ =

1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)>

=
1

N
(X− 1µ>)>(X− 1µ>)

where 1 is an N -dimensional vector of 1s.

This is called the empirical covariance and comes up quite often
(e.g., PCA soon!)

Derivation in multivariate case is tedious. No need to worry about
it. But it is good practice to derive this in one dimension. See
supplement (next slide).
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Supplement: MLE for univariate Gaussian

0 =
∂`

∂µ
= −

1

σ2

N∑
i=1

x(i) − µ

0 =
∂`

∂σ
=

∂

∂σ

[
N∑
i=1

−
1

2
log 2π − log σ −

1

2σ2
(x(i) − µ)2

]

=
N∑
i=1

−
1

2

∂

∂σ
log 2π −

∂

∂σ
log σ −

∂

∂σ

1

2σ
(x(i) − µ)2

=
N∑
i=1

0−
1

σ
+

1

σ3
(x(i) − µ)2

= −
N

σ
+

1

σ3

N∑
i=1

(x(i) − µ)2

µ̂ML =
1

N

N∑
i=1

x(i)

σ̂ML =

√√√√ 1

N

N∑
i=1

(x(i) − µ)2
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Gaussian Discriminant Analysis (Gaussian Bayes
Classifier)

Gaussian Discriminant Analysis in its general form assumes that p(x | t)
is distributed according to a multivariate Gaussian distribution

Multivariate Gaussian distribution:

p(x | t = k) =
1

(2π)d/2|Σk|1/2
exp

[
−1

2
(x− µk)TΣ−1k (x− µk)

]
where |Σk| is the determinant of Σk, and d is dimension of x

Each class k has a mean vector µk and a covariance matrix Σk

Each Σk has O(d2) parameters - could be hard to estimate
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Gaussian Discriminant Analysis (Gaussian Bayes
Classifier)

GDA (GBC) decision boundary is based on class posterior.

Make decisions by comparing class probabilities:

log p(tk|x) = log p(x|tk) + log p(tk)− log p(x)

= −d
2

log(2π)− 1

2
log |Σ−1k | −

1

2
(x− µk)TΣ−1k (x− µk)

+ log p(tk)− log p(x)

Decision boundary (log p(tk|x) = log p(tl|x)):

(x− µk)TΣ−1k (x− µk) = (x− µ`)TΣ−1` (x− µ`) + Ck,l

xTΣ−1k x− 2µTkΣ−1k x = xTΣ−1` x− 2µT` Σ−1` x + Ck,l

Quadratic relation in x =⇒ quadratic (conic) decision boundary

So sometimes called “Quadratic Discriminant Analysis” (QDA)
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Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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Learning

Learn the parameters for each class using maximum likelihood

Assume the prior is Bernoulli (we have two classes)

p(t|φ) = φt(1− φ)1−t.

You can compute the MLE in closed form (good exercise!)

φ̂ =
1

N

N∑
n=1

1[t(n) = 1]

µ̂k =

∑N
n=1 1[t(n) = k] · x(n)∑N

n=1 1[t(n) = k]

Σ̂k =
1∑N

n=1 1[t(n) = k]

N∑
n=1

1[t(n) = k](x(n) − µ̂t(n))(x(n) − µ̂t(n))T
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Simplifying the Model

What if x is high-dimensional?

For Gaussian Bayes Classifier, if input x is high-dimensional, then
covariance matrix has many parameters O(d2)

Save some parameters by using a shared covariance for the classes,
i.e. Σk = Σl.

Any other idea you can think of? (next lecture)

MLE in this case:

Σ̂ =
1

N

N∑
n=1

(x(n) − µt(n))(x
(n) − µt(n))

T

Linear decision boundary (at home: verify this mathematically!).
I In Scikit-Learn this is called “Linear Discriminant Analysis” (LDA)
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Decision Boundary: Shared Variances (between Classes)

variances may be 
different 
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Gaussian Discriminative Analysis vs Logistic Regression

Binary classification: If you examine p(t = 1|x) under GDA and
assume Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t|x, φ, µ0, µ1,Σ) =
1

1 + exp(−wTx)

where w is an appropriate function of (φ, µ0, µ1,Σ), φ = p(t = 1).

GDA is similar to logistic regression (LR), parameter estimates are
computed differently.

When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

GDA is a generative model, LR is a discriminative model.

GDA makes stronger modeling assumption: assumes
class-conditional data is multivariate Gaussian.

If this is true, GDA is asymptotically efficient (best model in limit
of large N)

But LR is more robust, less sensitive to incorrect modeling
assumptions (what loss is it optimizing?)

Many class-conditional distributions lead to logistic classifier.

When these distributions are non-Gaussian (true almost always),
LR usually beats GDA
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Generative models - Recap

GDA has quadratic (conic) decision boundary.

With shared covariance, GDA is similar to logistic regression.

Generative models:
I Flexible models, easy to add/remove class.

I Handle missing data naturally.

I More “natural” way to think about things, but usually doesn’t work
as well.

Tries to solve a hard problem (model p(x)) in order to solve a easy
problem (model p(t |x)).

Next up: Unsupervised learning with PCA!
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Unsupervised Learning: Motivating Examples

Some examples of situations where you’d use unsupervised learning

I You want to understand how a scientific field has changed over time. You
want to take a large database of papers and model how the distribution
of topics changes from year to year. But what are the topics?

I You’re a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don’t know the
set of behaviors ahead of time.

I You want to reduce your energy consumption, so you take a time series of
your energy consumption over time, and try to break it down into
separate components (refrigerator, washing machine, etc.).

Common theme: you have some data, and you want to infer the
structure underlying the data.

This structure is latent, which means it’s never observed.
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Motivating Examples

Determine groups of people in image above

I based on clothing styles, gender, age, etc

Determine moving objects in videos

Intro ML (UofT) CSC311-Lec8 34 / 44



PCA Overview

We now turn to the first unsupervised learning algorithm for this
course: principal component analysis (PCA)

Dimensionality reduction: map data to a lower dimensional space
I Save computation/memory
I Reduce overfitting, achieve better generalization
I Visualize in 2 dimensions

PCA is a linear model. It’s useful for understanding lots of other
algorithms.

I Autoencoders
I Matrix factorizations (next week)

PCA is linear-algebra-heavy. But we covered a lot of the main
intuitions already when we framed multivariate Gaussians as a
multivariate shift and “scale”.
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Recall: Multivariate Parameters

Setup: given a iid dataset D = {x(1), . . . ,x(N)} ⊂ RD.

N instances/observations/examples

X =


[x(1)]>

[x(2)]>

...

[x(N)]>

 =


x
(1)
1 x

(1)
2 · · · x

(1)
D

x
(2)
1 x

(2)
2 · · · x

(2)
D

...
...

. . .
...

x
(N)
1 x

(N)
2 · · · x

(N)
D


Mean

E[x(i)] = µ = [µ1, · · · , µD]T ∈ RD

Covariance

Σ = Cov(x(i)) = E[(x(i) − µ)(x(i) − µ)>] =


σ2
1 σ12 · · · σ1D

σ12 σ2
2 · · · σ2D

...
...

. . .
...

σD1 σD2 · · · σ2
D


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Multivariate Gaussian Model

x(i) ∼ N (µ,Σ), a Gaussian (or normal) distribution defined as

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
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Mean and Covariance Estimators

Observe data D = {x(1), ...,x(N)}.
Recall that the MLE estimators for the mean µ and Σ under the
multivariate Gaussian model is given by (previous lecture)

Sample mean: µ̂ =
1

N

N∑
i=1

x(i)

Sample covariance:

Σ̂ =
1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)>

=
1

N
(X− 1µ>)>(X− 1µ>)

µ̂ quantifies where your data is located in space (shift)

Σ̂ quantifies the shape of spread of your data points (scale)
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Low dimensional representation

In practice, even though data is very high dimensional, its important
features can be accurately captured in a low dimensional subspace.

Image credit: Elements of Statistical Learning

Find a low dimensional representation of your data.

I Computational benefits
I Interpretability, visualization
I Generalization
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Projection onto a subspace

Set-up: given a dataset D = {x(1), . . . ,x(N)} ⊂ RD

Set µ̂ to the sample mean of the data, µ̂ = 1
N

∑N
i=1 x(i)

Goal: find a K-dimensional subspace S ⊂ RD such that x(n) − µ̂ is
“well-represented” by its projection onto a K-dimensional S
Recall: The projection of a point x onto S is the point in S closest
to x. More on this coming soon.
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We are looking for directions

For example, in a 2-dimensional problem, we are looking for the
direction u1 along which the data is well represented: (?)

I e.g. direction of higher variance
I e.g. direction of minimum difference after projection
I turns out they are the same!
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First step: Center data

u3
<latexit sha1_base64="BJtgPVIz0UB+7ENyLWvfoj6wESs="></latexit>

Directions we compute will pass through origin, and should
represent the direction of highest variance.

We need to center our data since we don’t want location of data to
influence our calculations. We are only interested in finding the
direction of highest variance. This is independent from its mean.

=⇒ We are not interested in u3, we are interested in u1.

Intro ML (UofT) CSC311-Lec8 42 / 44



Second step: Project onto lower dimensional space S

A projection is just a multivariate “scale” by 0 in the pruned directions.
You already know how to do this!

Use positive semi-definite matrix:

Proju1
= Q

(
1 0
0 0

)
Q> where Q =

 | |
u1

‖u1‖
u2

‖u2‖
| |


This is the same as:

Proju1
= Q

(
1 0
0 0

)
Q> = UU> where U =

(
u1

‖u1‖

)
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Third step: Add back mean

u3
<latexit sha1_base64="BJtgPVIz0UB+7ENyLWvfoj6wESs="></latexit>

u3
<latexit sha1_base64="BJtgPVIz0UB+7ENyLWvfoj6wESs=">AAAHYnic3VVNb9NAEJ220BTz1VBucDBElThFCUF8SAgVcoFL1BTSVmmqynY2qdW1Hdlr1Cjqv+AK/4s7P4S3Yzf1khg4dy17Z8dvZt6MZ73uRPqJajR+rqyu3bi5Xtm4Zd2+c/fe/c3qg/0kSmNP9LxIRvGh6yRC+qHoKV9JcTiJhRO4Uhy4Z239/uCriBM/Cr+o6UQcB8449Ee+5yio+gMlztUsvThpnWzWGvUGD3tRaOZCjfKxG1XXntCAhhSRRykFJCgkBVmSQwmuI2pSgybQHdMMuhiSz+8FXZAF2xQoAYQD7RmeY6yOcm2ItfaZsLWHKBJ3DEubtnPMEPKItdms49sFbFmMGfvWHKeY3dxnAK2iU2j/ZXeJ/F87nZMCw9eciw+eE9boLD0joxFmibUCf/2cAikgDWEVQ/Kgk9BmGh0jxpzVVWd+ynV2GCcgaU4WfyXte8A+HHhIwGMwZ+7imtEemGRcbMgZzgbDlGskuMqXFdMVLvrdK/VXRPn8hQTXJF7KoV/g8MlAl8ful/oxM3e4ThF31vIKdI0KmHizEonhu1vqq4gK+X3KTJbH7xTidwz036J3Sj0VUXpXBOgmvfvOl1i0C7HbBnYxtkXb9sPrdumskOtn3nEe7y75R9cl1zbzqz55y70heaVYcvD9x/lfO+uP93ONjcrE+b9OAG925jv2pf9QY/SZynfhlTd0Ep86b/R4OT9jFoX95/Vmq97qvqjtfMjPnw16RE/pGc6YV7RDH2mXemAR0jf6Tj/Wf1WsSrWylUFXV3KbLTJG5fFvcjVG7Q==</latexit>

Summary for a given point x:

1. Subtract mean: x− µ̂
2. Project on S: UU>(x− µ̂), where columns of U are unit eigenvectors

for largest K eigenvalues of Σ̂ (K directions of highest variance)

3. Add back mean: µ̂+ UU>(x− µ̂)

The reconstruction is x̃ = µ̂+ Uz = µ̂+ UUT (x− µ̂)

Here, z = UT (x− µ̂) is a lower dimensional representation of x.

And that’s it! We’ve done Principal Components Analysis (PCA)!

Let’s now do this again in a bit more detail...
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