CSC 311: Introduction to Machine Learning
Lecture 6 - Bagging, Boosting

Roger Grosse Chris Maddison ~ Juhan Bae Silviu Pitis

University of Toronto, Fall 2020

Intro ML (UofT) CSC311-Lec6 1/48

Today

@ Today we will introduce ensembling methods that combine multiple
models and can perform better than the individual members.

» We’ve seen many individual models (KNN, linear models, neural
networks, decision trees)

o We will see bagging:

» Train models independently on random “resamples” of the training
data.

@ And boosting:

» Train models sequentially, each time focusing on training examples
that the previous ones got wrong.

@ Bagging and boosting serve slightly different purposes. Let’s briefly
review bias/variance decomposition.

Intro ML (UofT) CSC311-Lec6 2/48

Bias/Variance Decomposition

@ Recall, we treat predictions y at a query x as a random variable (where
the randomness comes from the choice of dataset), y, is the optimal
deterministic prediction, ¢ is a random target sampled from the true
conditional p(t|x).

El(y — t)’] = (v« —E[y])* + Var(y) + Var(t)

bias variance Bayes error

@ Bias/variance decomposes the expected loss into three terms:

» bias: how wrong the expected prediction is (corresponds to
underfitting)

» variance: the amount of variability in the predictions (corresponds
to overfitting)

» Bayes error: the inherent unpredictability of the targets

@ Even though this analysis only applies to squared error, we often loosely
use “bias” and “variance” as synonyms for “underfitting” and
“overfitting”.

Intro ML (UofT) CSC311-Lec6 3/48

Bias/Variance Decomposition: Another Visualization

e We can visualize this decomposition in output space, where the
axes correspond to predictions on the test examples.

o If we have an overly simple model (e.g. KNN with large k), it
might have

» high bias (because it cannot capture the structure in the data)
» low variance (because there’s enough data to get stable estimates)

y from one
contours of training set
expected loss
residual)Z
bias__,_—-,X\E[y]
9 - X
Iy()

1
y()

Intro ML (UofT) CSC311-Lec6 4/48

Bias/Variance Decomposition: Another Visualization

e If you have an overly complex model (e.g. KNN with k£ = 1), it
might have

» low bias (since it learns all the relevant structure)
» high variance (it fits the quirks of the data you happened to sample)
X

contours of
expected loss

Intro ML (UofT) CSC311-Lec6 5/48

Bias/Variance Decomposition: Another Visualization

@ The following graphic summarizes the previous two slides:

Low Variance High Variance

@ What doesn’t this capture?

Low Bias

High Bias

A: Bayes error

Intro ML (UofT) CSC311-Lec6 6/48

Bagging: Motivation

@ Suppose we could somehow sample m independent training sets
from psample-

@ We could then compute the prediction y; based on each one, and
take the average y = L 3" ;.

o How does this affect the three terms of the expected loss?

» Bayes error: unchanged, since we have no control over it
» Bias: unchanged, since the averaged prediction has the same

expectation
m

i=1

Ely] =E = Efy]

» Variance: reduced, since we're averaging over independent
samples

m

1 1 & 1
m Zyz] =2 ;Vaf[yi] = Evar[yi]'

i=1

Var[y] = Var

Intro ML (UofT) CSC311-Lec6 7/48

Bagging: The Idea

@ In practice, the sampling distribution psample is often finite or expensive
to sample from.

@ So training separate models on independently sampled datasets is very
wasteful of data!

» Why not train a single model on the union of all sampled datasets?

@ Solution: given training set D, use the empirical distribution pp as a
proxy for psampie. This is called bootstrap aggregation, or bagging .

» Take a single dataset D with n examples.

» Generate m new datasets (“resamples” or “bootstrap samples”),
each by sampling n training examples from D, with replacement.

» Average the predictions of models trained on each of these datasets.

@ The bootstrap is one of the most important ideas in all of statistics!

» Intuition: As |D| — oo, we have pp — Psample-

Intro ML (UofT) CSC311-Lec6 8 /48

Bagging

Te Te x3
" {..A.AAA}Dl
= T4 Ts T2

ot
e
Wi

z1
.. Z7 Te T3 zl x3
o _,L_.{ Ao e e } Dy
L6 with replacement Zo
A A
Ts5 To

A Samplg
X4 " oDl 1 Tg T7 Te Te T3
coment { A ® 06 0 0 0O } D3

in this example n =7, m =3

CSC311-Lec6 9/48

Bagging

Te Te z3 [del
{.OAOAAA}DI&.%
T2 Ty4 T5 To and prediict for query

Prediction

m7 x6 xs ml rain model T
{AOQ..A.}'DQ ren o Yo—e> yi/m

o and predict for query

T1 Tg L7 T T T3 train model
AOG® OO 000 Dy ———— Y3
$4 and predict for query

predicting on a query point x

Intro ML (Uof CSC311-Lec6 10 /48

Bagging: Effect on Hypothesis Space

@ We saw that in case of squared error, bagging does not affect bias.
@ But it can change the hypothesis space / inductive bias.

@ Illustrative example:

z~U(=3,3), t ~N(0,1)
H={wz|we{-1,1}}
Sampled datasets & fitted hypotheses:

v

v

v

v

Ensembled hypotheses (mean over 1000 samples):

R » The ensembled hypothesis is not in

—_—
o .

N the original hypothesis space!

=

LI H

@ This effect is most pronounced when combining classifiers ...

Intro ML (UofT) CSC311-Lec6 11 /48

Bagging for Binary Classification

@ If our classifiers output real-valued probabilities, z; € [0, 1], then we can
average the predictions before thresholding:

m z
Ybagged = H(Zbagged > 05) =1I <Z E > 05>
=1

@ If our classifiers output binary decisions, y; € {0,1}, we can still average
the predictions before thresholding:

Ybagged = 1 <41 é > 0.5)

This is the same as taking a majority vote.
@ A bagged classifier can be stronger than the average underyling model.

» E.g., individual accuracy on “Who Wants to be a Millionaire” is
only so-so, but “Ask the Audience” is quite effective.

Intro ML (UofT) CSC311-Lec6 12 /48

Bagging: Effect of Correlation

o Problem: the datasets are not independent, so we don’t get the
1/m variance reduction.
» Possible to show that if the sampled predictions have variance o2
and correlation p, then

1 & 1))
Var (m;yz> = E(l—p)a + po©.

@ Ironically, it can be advantageous to introduce additional
variability into your algorithm, as long as it reduces the
correlation between samples.

» Intuition: you want to invest in a diversified portfolio, not just one
stock.

» Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.

Intro ML (UofT) CSC311-Lec6 13 /48

Random Forests

o Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

» When choosing each node of the decision tree, choose a random set
of d input features, and only consider splits on those features

o Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

» one of the most widely used algorithms in Kaggle competitions

Intro ML (UofT) CSC311-Lec6 14 /48

Bagging Summary

@ Bagging reduces overfitting by averaging predictions.
@ Used in most competition winners
» Even if a single model is great, a small ensemble usually helps.
@ Limitations:
» Does not reduce bias in case of squared error.
» There is still correlation between classifiers.
» Random forest solution: Add more randomness.

» Naive mixture (all members weighted equally).

> If members are very different (e.g., different algorithms, different
data sources, etc.), we can often obtain better results by using a
principled approach to weighted ensembling.

@ Boosting, up next, can be viewed as an approach to weighted ensembling
that strongly decorrelates ensemble members.

Intro ML (UofT) CSC311-Lec6 15 /48

Boosting

@ Boosting

» Train classifiers sequentially, each time focusing on training
examples that the previous ones got wrong.
» The shifting focus strongly decorrelates their predictions.

@ To focus on specific examples, boosting uses a weighted training set.

Intro ML (UofT) CSC311-Lec6 16 /48

Weighted Training set

@ The misclassification rate 4 25:1 I[h(2™) # t(™] weights each training
example equally.

o Key idea: we can learn a classifier using different costs (aka weights) for
examples.

» Classifier “tries harder” on examples with higher cost

@ Change cost function:

N N
Z #t™] becomes Z w ™M (z™) #£ ™)

n=1

e Usually require each w(™ > 0 and Z 1 w™ =1

Intro ML (UofT) CSC311-Lec6 17 /48

AdaBoost (Adaptive Boosting)

@ We can now describe the AdaBoost algorithm.

Given a base classifier, the key steps of AdaBoost are:

1. At each iteration, re-weight the training samples by assigning larger
weights to samples (i.e., data points) that were classified incorrectly.

2. Train a new base classifier based on the re-weighted samples.

3. Add it to the ensemble of classifiers with an appropriate weight.

4. Repeat the process many times.

@ Requirements for base classifier:

» Needs to minimize weighted error.
» Ensemble may get very large, so base classifier must be fast. It
turns out that any so-called weak learner/classifier suffices.

o Individually, weak learners may have high bias (underfit). By making
each classifier focus on previous mistakes, AdaBoost reduces bias.

Intro ML (UofT) CSC311-Lec6 18 /48

Weak Learner/Classifier

o (Informal) Weak learner is a learning algorithm that outputs a hypothesis
(e.g., a classifier) that performs slightly better than chance, e.g., it
predicts the correct label with probability 0.51 in binary label case.

@ We are interested in weak learners that are computationally efficient.

» Decision trees
» Even simpler: Decision Stump: A decision tree with a single split

[Formal definition of weak learnability has quantifies such as “for any distribution over data” and the
requirement that its guarantee holds only probabilistically.]

Intro ML (UofT) CSC311-Lec6 19 /48

Weak Classifiers

These weak classifiers, which are decision stumps, consist of the set of
horizontal and vertical half spaces.

Vertical half spaces Horizontal half spaces
+ +
+ + = Sl + =
+ | - + — -
+ - + -

Intro ML (U CSC311-Lec6 20 /48

Weak Classifiers

Vertical half spaces Horizontal half spaces
+ ar
+ + = ar o
+ — + —

@ A single weak classifier is not capable of making the training error small

@ But if can guarantee that it performs slightly better than chance, i.e.,
the weighted error of classifier h according to the given weights
w = (wy,...,wy) is at most % — ~y for some v > 0, using it with
AdaBoost gives us a universal function approximator!

@ Last lecture we used information gain as the splitting criterion. When
using decision stumps with AdaBoost we often use a “GINI Impurity”,
which (roughly speaking) picks the split that directly minimizes error.

@ Now let’s see how AdaBoost combines a set of weak classifiers in order to
make a better ensemble of classifiers...

Intro ML (UofT) CSC311-Lec6 21 /48

Notation in this lecture

o Input: Data Dy = {x(™ t}N_| where t(" € {~1,+1}

» This is different from previous lectures where we had ¢(™ € {0, +1}
» It is for notational convenience, otw equivalent.

o A classifier or hypothesis h:x—{-1,+1}
o 0-1 loss: I[h(z(™) # (] = %(1 — h(z™) . ¢()

Intro ML (UofT) CSC311-Lec6 22 /48

AdaBoost Algorithm

@ Input: Data Dy, weak classifier WeakLearn (a classification procedure that
returns a classifier h, e.g. best decision stump, from a set of classifiers H, e.g.
all possible decision stumps), number of iterations T’

@ Output: Classifier H(z)
@ Initialize sample weights: w(™ = % form=1,...,N
@ Fort=1,...,T
> Fit a classifier to weighted data (h: < WeakLearn(Dn,w)), e.g.,

hy + argmin 0 w™T{h(x™) £t}
heH

Sy w ™Mk (x() £}
Z . w(m)

» Compute classifier coefficient oy = 1 log ot (€(0,00))
» Update data weights

w™ — w™ exp (—att(n>ht(x(n))) [E w™ exp (Qatll{ht (x") # t(m})}
Homework 3: prove the above equivalence.
@ Return H(x) = sign (Zszl ahy (x))

Intro ML (UofT) CSC311-Lec6 23 /48

» Compute weighted error err; =

Weighting Intuition

o Recall: H(x) = sign (Zthl Oétht(x)) where a; = § log 1220

erry

~ w -

ai- classifier coefficient

=

0.0 01 02 03 04 05
err:- weighted error

o Weak classifiers which get lower weighted error get more weight in
the final classifier
o Also: w(™ «— w(™ exp (2atﬂ{ht(x(")) # t(")})
» If erry; =~ 0, oy high so misclassified examples get more attention
» If erry = 0.5, a; low so misclassified examples are not emphasized

Intro ML (UofT) CSC311-Lec6 24 /48

AdaBoost Example

@ Training data

[Slide credit: Verma & Thrun]

Intro ML (UofT) CSC311-Lec6 25 /48

AdaBoost Example

@ Round 1
/ll Dy
& +7 -
+| - + T -
+ = + -
€1 =0.30
(x1=0.42
10) (i) (i)
w = (i, o, i) = Train a classifier (using w) = err; = =y willh () 2) =
10 10 >N w;
2l 1T L gL) ~o042 = Hx) =i h
a1 = log e og(ﬁ — 1) &~ 0.42 = H(x) = sign (a1h1(x))

[Slide credit: Verma & Thrun]
Intro ML () CSC311-Lec6

3

10

26/ 48

AdaBoost Example

@ Round 2
/72 D3
+ + +
A L —|— _|_ + +
+ - _ + ©) T
1 - + - R -
— @ -
£5=0.21
0(2=0.65
10 . @)y 2 ()
w = updated weights = Train a classifier (using w) = errg = Sizy wilthaG) # 67} =0.21
S ws
L log L8 _ D iog(— — 1) & 0.66 = H(x) = sign (a1h1 (x) + azha (x))
=Sag = — = - —1) ~ 0.66 = =
g 2 og p— 2 og 0o x sign (a1 hy(x asha(x

[Slide credit: Verma & Thrun]
Intro ML (U CSC311-Lec6 27 /48

AdaBoost Example

@ Round 3

€3=0.14
0t;=0.92

12 wilfhg (x(D) # ¢}
Z?’:l wy
1 —err3 1 1

1
=a3 = —log ——— = —log(—— — 1) = 0.91 = H(x) = sign (a1h1(x) + azha(x) + aghz(x))
2 erry 2 0.14

w = updated weights = Train a classifier (using w) = errg = 0.14

[Slide credit: Verma & Thrun]
SR ey

AdaBoost Example

@ Final classifier

B =sign}| 0.42
final

+0.65

+0.92

[Slide credit: Verma & Thrun)]

Intro ML (UofT)

CSC311-Lec6

29 /48

AdaBoost Algorithm

Samples

T
Re-weighted ________ >hy H(x) = sign (Z atht(l’)>
t=1

A

Wy — Ww; exp <2atﬂ{ht(x(i)) #* t(i)}

1 (1-— errt)
a; = = log
2 erry

?

N Ik (x® £ £D}
Zij\;1 W;

Re-weighted ________
Samples " h3

Intro ML (UofT) CSC311-Lec6 30 /48

AdaBoost Example

2
o |°o’"71 “le | . m=2 2 m=3
o OOPQ’ o 1O . -0

0 o .4 o © [. B

& % (o] 0 : 9 O 0 5 ° O
& .l ° ° . ° .
0o $ 0 ° o . 15 o~
-2 B10 3 %’-Q —2____'°L-Q___
1o | ° .
-1 0 1 2 -1 0 1 2 -1 0 1 2
2 ;

2 . m=6 2F T mo0] | [T, m=150
. do . 4w = qef
_______3 o # @ . 0 s I .

. T O o o O R (2

. o ° L - - _o _o_ _ 0.,°
o Q' " © o e 8Q
i) 0.) ea. . -2 a1 =
(.
-1 0 1 2 -1 0 1 2 -1 0 L 2

@ Each figure shows the number m of base learners trained so far, the
decision of the most recent learner (dashed black), and the boundary of
the ensemble (green)

Intro ML (UofT) CSC311-Lec6 31/48

AdaBoost Minimizes the Training Error

Theorem

Assume that at each iteration of AdaBoost the WeakLearn returns a
hypothesis with error err; < % —vforallt=1,...,T with v > 0. The training

error of the output hypothesis H(x) = sign (Zle ahy (x)) is at most

N
Li(H) = 3= S HHED) # 19)} < exp (~29°T).

i=1

@ This is under the simplifying assumption that each weak learner is
~v-better than a random predictor.

@ This is called geometric convergence. It is fast!

Intro ML (UofT) CSC311-Lec6 32 /48

Generalization Error of AdaBoost

@ AdaBoost’s training error (loss) converges to zero. What about the test

error of H?

@ As we add more weak classifiers, the overall classifier H becomes more

“complex”.

@ We expect more complex classifiers overfit.

@ If one runs AdaBoost long enough, it can in fact overfit.

30

251 |

20 \ tw
— \ o
o \ e
E15 | N
(]

10 | train

5 L

0 L L

1 10 100
rounds

Intro ML (UofT)

CSC311-Lec6

1000

33 /48

Generalization Error of AdaBoost

@ But often it does not!

@ Sometimes the test error decreases even after the training error is zero!

test
o ‘ M train
10 100 1000
of rounds (1)

@ How does that happen?

@ Next, we provide an alternative viewpoint on AdaBoost.

[Slide credit: Robert Shapire’s Slides,
http://www.cs.princeton.edu/courses/archive/spring12/cos598A/schedule.html]

Intro ML (UofT) CSC311-Lec6 34 /48

http://www.cs.princeton.edu/courses/archive/spring12/cos598A/schedule.html

Additive Models

Next, we’ll now interpret AdaBoost as a way of fitting an additive model.

o Consider a hypothesis class H with each h; : x — {—1,+1} within H,
i.e., h; € H. These are the “weak learners”, and in this context they’re
also called bases.

@ An additive model with m terms is given by
Hpy(z) =Y aihi(x),
i=1

where (g, ,) € R™.

@ Observe that we’re taking a linear combination of base classifiers h;(x),
just like in boosting.

@ Note also the connection to feature maps (or basis expansions) that we
saw in linear regression and neural networks!

Intro ML (UofT) CSC311-Lec6 35 /48

Stagewise Training of Additive Models

A greedy approach to fitting additive models, known as stagewise training:
1. Initialize Ho(z) =0
2. Form=1toT:

» Compute the m-th hypothesis H,, = Hy,—1 + amhm, i.e. by, and
Q, assuming previous additive model H,,,_1 is fixed:

N
(R, Q) argminz L (Hm_l(x(i)) + ah(x®), t(i)>
heH,o i—1

» Add it to the additive model

Hy,, = Hyo1 +anhp

Intro ML (UofT) CSC311-Lec6 36 /48

Additive Models with Exponential Loss

Consider the exponential loss
Li(z,t) = exp(—tz).

We want to see how the stagewise training of additive models can be done.

— zero-one
—— least squares
—— logistic + CE
— hinge

—— exponential

Intro ML (UofT) CSC311-Lec6 37 /48

Additive Models with Exponential Loss

Consider the exponential loss

Lg(z,t) = exp(—tz).

We want to see how the stagewise training of additive models can be done.

N

(R, Q) a}fg—??; exp (f [Hm_l(x(i)) + ah(x(i))] t(i)>

-

@
Il
-

exp (—Hm,l(x(i))t(i)) exp (—ah(x(i))t(i))

-

wgm) exp (—ah(x(i))t(i)) .

=1

Here we defined wgm) £ exp (—Hpp—1 (xD)t®) (doesn’t depend on h,).

Intro ML (UofT) CSC311-Lec6

38 /48

Additive Models with Exponential Loss
We want to solve the following minimization problem:

(M 0tm) = argmin 3N | w!™ exp (—ah(x®)t@) . (1)
heH,

@ Recall from Slide 23 that
w™ exp (—atht(x("))t(”)> o w™ exp (2at]l{ht (x(™) £ t(")})

(you will prove this on your Homework).

@ Thus, for h,,, the above minimization is equivalent to:

B « argmin 3N | w(™ exp (20 I{hs (x(™) # ¢(M1)

i

heH
= al;lgn;in >N wgm) (exp (20 I{he(x(™) £ t(M}) — 1) > subtract ngm)
€
= argmin vazl wgm)ﬂ{ht(x(n)) £ t(m} > divide by (exp(2a¢) — 1)
heH

@ This means that h,, is the minimizer of the weighted 0/1-loss.

Intro ML (UofT) CSC311-Lec6 39 /48

@ Now that we obtained h,,, we can plug it into our exponential loss
objective (1) and solve for au,,.

@ The derivation is a bit laborious and doesn’t provide additional insight,
so we skip it.

@ We arrive at:
1 (1— errm>
Q= =log| — |,
2 err,,

where err,, is the weighted classification error:

S w{™ Ik (x) # ¢}
Zi]il wz(m)

err,, =

Intro ML (UofT) CSC311-Lec6 40 /48

Additive Models with Exponential Loss

We can now find the updated weights for the next iteration:

K3

w™ = exp (—Hm(x(i))t(i))

([mo1(xP) + amhm(x(i))] t(i)>
= exp (RITAL)) exp (mhm (x(i))t(i))
m)

l(exp((% (’))t(l))

= exp

Intro ML (UofT) CSC311-Lec6 41 /48

Additive Models with Exponential Loss

To summarize, we obtain the additive model H,,(z) = Y i~ a;h;(x) with

N
hp, argminz wl(m)]l{h(x(i)) £ t(i)},
heH

i=1
1 1—err, N w ™ h,, (x®) £ ¢t
a=_lo (err)) where err,, = 2iz1 W]é ((X)) # }7
2 eIl e, wim

wgmﬂ) = (™ exp (—amhm(x(i))t(i)) .

)

We derived the AdaBoost algorithm!

Intro ML (UofT) CSC311-Lec6 42 /48

Revisiting Loss Functions for Classification

— zero-one
—— least squares
—— logistic + CE
— hinge

—— exponential

o If AdaBoost is minimizing exponential loss, what does that say about its
behavior (compared to, say, logistic regression)?

@ This interpretation allows boosting to be generalized to lots of other loss
functions.

Intro ML (UofT) CSC311-Lec6 43 /48

AdaBoost for Face Detection

@ Famous application of boosting: detecting faces in images

@ Viola and Jones created a very fast face detector that can be scanned
across a large image to find the faces.

@ A few twists on standard algorithm

» Change loss function for weak learners: false positives less costly
than misses
» Smart way to do inference in real-time (in 2001 hardware)

3
7

Intro ML (UofT) CSC311-Lec6 44 /48

AdaBoost for Face Recognition

01,

@ The base classifier/weak learner just compares the total intensity in two
rectangular pieces of the image and classifies based on comparison of this
difference to some threshold.

» There is a neat trick for computing the total intensity in a rectangle
in a few operations.

> So it is easy to evaluate a huge number of base classifiers and they
are very fast at runtime.

» The algorithm adds classifiers greedily based on their quality on the
weighted training cases

» Each classifier uses just one feature

Intro ML (UofT) CSC311-Lec6 45 /48

AdaBoost Face Detection Results

Intro ML (UofT) CSC311-Lec6 46 / 48

Boosting Summary

Boosting reduces bias by generating an ensemble of weak classifiers.

Each classifier is trained to reduce errors of previous ensemble.

It is quite resilient to overfitting, though it can overfit.

@ Loss minimization viewpoint to AdaBoost allows us to derive other
boosting algorithms for regression, ranking, etc.

Intro ML (UofT) CSC311-Lec6 47 /48

Ensembles Recap

@ Ensembles combine classifiers to improve performance
@ Boosting

Reduces bias

Increases variance (large ensemble can cause overfitting)
Sequential

High dependency between ensemble elements

v vy VvYy

@ Bagging

\4

Reduces variance (large ensemble can’t cause overfitting)
Bias is not changed (much)

Parallel

Want to minimize correlation between ensemble elements.

>
>
>

Intro ML (UofT) CSC311-Lec6 48 / 48

	Introduction

