Today

- Decision Trees
 - Simple but powerful learning algorithm
 - Used widely in Kaggle competitions
 - Lets us motivate concepts from information theory (entropy, mutual information, etc.)

- Bias-variance decomposition
 - Lets us motivate methods for combining different classifiers.
Decision Trees

- Make predictions by splitting on features according to a tree structure.
Decision Trees

- Make predictions by splitting on features according to a tree structure.
Decision Trees—Continuous Features

- Split *continuous features* by checking whether that feature is greater than or less than some threshold.
- Decision boundary is made up of axis-aligned planes.
• **Internal nodes** test a feature

• **Branching** is determined by the feature value

• **Leaf nodes** are outputs (predictions)
Each path from root to a leaf defines a region R_m of input space.

Let $\{(x^{(m_1)}, t^{(m_1)}), \ldots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m.

Classification tree (we will focus on this):

- discrete output
- leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Regression tree:

- continuous output
- leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$
Will I eat at this restaurant?

Decision Trees—Discrete Features

- Patrons?
 - None
 - Some
 - Full

- WaitEstimate?
 - F
 - T

- Alternate?
 - F
 - T

- Hungry?
 - No
 - Yes

- Reservation?
 - No
 - Yes

- Fri/Sat?
 - No
 - Yes

- Bar?
 - No
 - Yes

- Alternate?
 - No
 - Yes

- Raining?
 - No
 - Yes
Decision Trees—Discrete Features

- Split *discrete features* into a partition of possible values.

<table>
<thead>
<tr>
<th>Example</th>
<th>Input Attributes</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Yes No No Yes Some $$$ No Yes French 0–10</td>
<td>$y_1 = Yes$</td>
</tr>
<tr>
<td>x_2</td>
<td>Yes No No Yes Full $ No No Thai 30–60</td>
<td>$y_2 = No$</td>
</tr>
<tr>
<td>x_3</td>
<td>No Yes No No Some $ No No Burger 0–10</td>
<td>$y_3 = Yes$</td>
</tr>
<tr>
<td>x_4</td>
<td>Yes No Yes Yes Full $ Yes No Thai 10–30</td>
<td>$y_4 = Yes$</td>
</tr>
<tr>
<td>x_5</td>
<td>Yes No Yes No Full $$$ No Yes French >60</td>
<td>$y_5 = No$</td>
</tr>
<tr>
<td>x_6</td>
<td>No Yes No Yes Some $$ Yes Yes Italian 0–10</td>
<td>$y_6 = Yes$</td>
</tr>
<tr>
<td>x_7</td>
<td>No Yes No No None $ Yes No Burger 0–10</td>
<td>$y_7 = No$</td>
</tr>
<tr>
<td>x_8</td>
<td>No No No Yes Some $$ Yes Yes Thai 0–10</td>
<td>$y_8 = Yes$</td>
</tr>
<tr>
<td>x_9</td>
<td>No Yes Yes No Full $ Yes No Burger >60</td>
<td>$y_9 = No$</td>
</tr>
<tr>
<td>x_{10}</td>
<td>Yes Yes Yes Yes Full $$$ No Yes Italian 10–30</td>
<td>$y_{10} = No$</td>
</tr>
<tr>
<td>x_{11}</td>
<td>No No No No None $ No No Thai 0–10</td>
<td>$y_{11} = No$</td>
</tr>
<tr>
<td>x_{12}</td>
<td>Yes Yes Yes Yes Full $ No No Burger 30–60</td>
<td>$y_{12} = Yes$</td>
</tr>
</tbody>
</table>

Features:

1. Alternate: whether there is a suitable alternative restaurant nearby.
2. Bar: whether the restaurant has a comfortable bar area to wait in.
3. Fri/Sat: true on Fridays and Saturdays.
4. Hungry: whether we are hungry.
5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
6. Price: the restaurant’s price range ($, $$, $$

- Raining: whether it is raining outside.
- Reservation: whether we made a reservation.
- Type: the kind of restaurant (French, Italian, Thai or Burger).
- WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
Learning Decision Trees

- For any training set we can construct a decision tree that has exactly the one leaf for every training point, but it probably won’t generalize.
 - Decision trees are universal function approximators.
- But, finding the smallest decision tree that correctly classifies a training set is NP complete.
 - If you are interested, check: Hyafil & Rivest’76.
- So, how do we construct a useful decision tree?
Resort to a greedy heuristic:

- Start with the whole training set and an empty decision tree.
- Pick a feature and candidate split that would most reduce the loss.
- Split on that feature and recurse on subpartitions.

Which loss should we use?

- Let’s see if misclassification rate is a good loss.
Choosing a Good Split

- Consider the following data. Let’s split on width.

![Graph showing points labeled 'oranges' and 'lemons' on a grid for height and width.](image)
Choosing a Good Split

- Recall: classify by majority.

- A and B have the same misclassification rate, so which is the best split? Vote!
Choosing a Good Split

- A feels like a better split, because the left-hand region is very certain about whether the fruit is an orange.

- Can we quantify this?
Choosing a Good Split

- How can we quantify uncertainty in prediction for a given leaf node?
 - If all examples in leaf have same class: good, low uncertainty
 - If each class has same amount of examples in leaf: bad, high uncertainty

- **Idea:** Use counts at leaves to define probability distributions; use a probabilistic notion of uncertainty to decide splits.

- A brief detour through information theory...
Quantifying Uncertainty

- The **entropy** of a discrete random variable is a number that quantifies the **uncertainty** inherent in its possible outcomes.

- The mathematical definition of entropy that we give in a few slides may seem arbitrary, but it can be motivated axiomatically.
 - If you’re interested, check: *Information Theory* by Robert Ash.

- To explain entropy, consider flipping two different coins...
We Flip Two Different Coins

Sequence 1:
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 ... ?

Sequence 2:
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?

versus

16
0 1

2

8
0 1

10

versus

Intro ML (UofT)
CSC311-Lec5
Quantifying Uncertainty

- The entropy of a loaded coin with probability \(p \) of heads is given by

 \[-p \log_2(p) - (1 - p) \log_2(1 - p) \]

- Notice: the coin whose outcomes are more certain has a lower entropy.

- In the extreme case \(p = 0 \) or \(p = 1 \), we were certain of the outcome before observing. So, we gained no certainty by observing it, i.e., entropy is 0.
Quantifying Uncertainty

- Can also think of entropy as the expected information content of a random draw from a probability distribution.

- Claude Shannon showed: you cannot store the outcome of a random draw using fewer expected bits than the entropy without losing information.

- So units of entropy are bits; a fair coin flip has 1 bit of entropy.
More generally, the *entropy* of a discrete random variable Y is given by

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y)$$

- **“High Entropy”:**
 - Variable has a uniform like distribution over many outcomes
 - Flat histogram
 - Values sampled from it are less predictable

- **“Low Entropy”**
 - Distribution is concentrated on only a few outcomes
 - Histogram is concentrated in a few areas
 - Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
Suppose we observe partial information X about a random variable Y

- For example, $X = \text{sign}(Y)$.

We want to work towards a definition of the expected amount of information that will be conveyed about Y by observing X.

- Or equivalently, the expected reduction in our uncertainty about Y after observing X.
Entropy of a Joint Distribution

- Example: \(X = \{ \text{Raining, Not raining} \} \), \(Y = \{ \text{Cloudy, Not cloudy} \} \)

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

\[
H(X, Y) = - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(x, y)
\]

\[
= - \frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}
\]

\[
\approx 1.56 \text{bits}
\]
Specific Conditional Entropy

- Example: \(X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\} \)

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

- What is the entropy of cloudiness \(Y \), given that it is raining?

\[
H(Y|X = x) = - \sum_{y \in Y} p(y|x) \log_2 p(y|x)
\]

\[
= - \frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}
\]

\[\approx 0.24\text{bits}\]

- We used: \(p(y|x) = \frac{p(x,y)}{p(x)} \), and \(p(x) = \sum_{y} p(x,y) \) (sum in a row)
Conditional Entropy

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

- The expected conditional entropy:

\[
H(Y|X) = \sum_{x \in X} p(x) H(Y|X = x)
\]

\[
= - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(y|x)
\]
Conditional Entropy

- Example: \(X = \{ \text{Raining, Not raining} \} \), \(Y = \{ \text{Cloudy, Not cloudy} \} \)

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

- What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

\[
H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)
\]

\[
= \frac{1}{4}H(\text{cloudy|is raining}) + \frac{3}{4}H(\text{cloudy|not raining})
\]

\[
\approx 0.75 \text{ bits}
\]
Conditional Entropy

Some useful properties:

- \(H \) is always non-negative
- Chain rule: \(H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X) \)
- If \(X \) and \(Y \) independent, then \(X \) does not affect our uncertainty about \(Y \): \(H(Y|X) = H(Y) \)
- But knowing \(Y \) makes our knowledge of \(Y \) certain: \(H(Y|Y) = 0 \)
- By knowing \(X \), we can only decrease uncertainty about \(Y \): \(H(Y|X) \leq H(Y) \)
Information Gain

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

- How much more certain am I about whether it’s cloudy if I’m told whether it is raining? My uncertainty in Y minus my expected uncertainty that would remain in Y after seeing X.

- This is called the information gain $IG(Y|X)$ in Y due to X, or the mutual information of Y and X

$$IG(Y|X) = H(Y) - H(Y|X)$$ (1)

- If X is completely uninformative about Y: $IG(Y|X) = 0$
- If X is completely informative about Y: $IG(Y|X) = H(Y)$
Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree split!
- The information gain of a split: how much information (over the training set) about the class label Y is gained by knowing which side of a split you’re on.
Revisiting Our Original Example

- What is the information gain of split B? Not terribly informative...

- Root entropy of class outcome: $H(Y) = -\frac{2}{7} \log_2(\frac{2}{7}) - \frac{5}{7} \log_2(\frac{5}{7}) \approx 0.86$

- Leaf conditional entropy of class outcome: $H(Y|left) \approx 0.81$, $H(Y|right) \approx 0.92$

- $IG(split) \approx 0.86 - (\frac{4}{7} \cdot 0.81 + \frac{3}{7} \cdot 0.92) \approx 0.006$
Revisiting Our Original Example

What is the information gain of split A? Very informative!

- Root entropy of class outcome: $H(Y) = -\frac{2}{7} \log_2(\frac{2}{7}) - \frac{5}{7} \log_2(\frac{5}{7}) \approx 0.86$
- Leaf conditional entropy of class outcome: $H(Y|left) = 0$, $H(Y|right) \approx 0.97$
- $IG(split) \approx 0.86 - (\frac{2}{7} \cdot 0 + \frac{5}{7} \cdot 0.97) \approx 0.17!!$
Constructing Decision Trees

At each level, one must choose:

1. Which feature to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the decision! (choose feature that gives the highest gain)
Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
 1. pick a feature to split at a non-terminal node
 2. split examples into groups based on feature value
 3. for each group:
 ▶ if no examples – return majority from parent
 ▶ else if all examples in same class – return class
 ▶ else loop to step 1

- Terminates when all leaves contain only examples in the same class or are empty.
Back to Our Example

Features:

1. **Alternate**: whether there is a suitable alternative restaurant nearby.
2. **Bar**: whether the restaurant has a comfortable bar area to wait in.
3. **Fri/Sat**: true on Fridays and Saturdays.
4. **Hungry**: whether we are hungry.
5. **Patrons**: how many people are in the restaurant (values are None, Some, and Full).
6. **Price**: the restaurant's price range ($, $$, $$$).
7. **Raining**: whether it is raining outside.
8. **Reservation**: whether we made a reservation.
9. **Type**: the kind of restaurant (French, Italian, Thai or Burger).
10. **WaitEstimate**: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Input Attributes

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>HUN</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>0–10</td>
</tr>
<tr>
<td>x₂</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>30–60</td>
</tr>
<tr>
<td>x₃</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
</tr>
<tr>
<td>x₄</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Thai</td>
<td>10–30</td>
</tr>
<tr>
<td>x₅</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>>60</td>
</tr>
<tr>
<td>x₆</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$</td>
<td>Yes</td>
<td>Yes</td>
<td>Italian</td>
<td>0–10</td>
</tr>
<tr>
<td>x₇</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
</tr>
<tr>
<td>x₈</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$</td>
<td>Yes</td>
<td>Yes</td>
<td>Thai</td>
<td>0–10</td>
</tr>
<tr>
<td>x₉</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>>60</td>
</tr>
<tr>
<td>x₁₀</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>Italian</td>
<td>10–30</td>
</tr>
<tr>
<td>x₁₁</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>0–10</td>
</tr>
<tr>
<td>x₁₂</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>30–60</td>
</tr>
</tbody>
</table>

Goal

- **WillWait**
 - y₁ = Yes
 - y₂ = No
 - y₃ = Yes
 - y₄ = Yes
 - y₅ = No
 - y₆ = Yes
 - y₇ = No
 - y₈ = Yes
 - y₉ = No
 - y₁₀ = No
 - y₁₁ = No
 - y₁₂ = Yes
Feature Selection

\[
IG(Y) = H(Y) - H(Y|X)
\]

\[
IG(type) = 1 - \left[\frac{2}{12} H(Y|Fr.) + \frac{2}{12} H(Y|It.) + \frac{4}{12} H(Y|Thai) + \frac{4}{12} H(Y|Bur.) \right] = 0
\]

\[
IG(Patrons) = 1 - \left[\frac{2}{12} H(0,1) + \frac{4}{12} H(1,0) + \frac{6}{12} H\left(\frac{2}{6}, \frac{4}{6}\right) \right] \approx 0.541
\]
Which Tree is Better? Vote!

- **Patrons?**
 - None
 - No
 - Yes
 - Some
 - Full
 - No
 - Yes

- **Wait Estimate?**
 - >60
 - No
 - Yes
 - 30-60
 - 10-30
 - 0-10

- **Alternate?**
 - No
 - No
 - Yes
 - Yes

- **Reservation?**
 - No
 - No
 - Yes
 - Yes

- **Fri/Sat?**
 - No
 - No
 - Yes
 - Yes

- **Hungry?**
 - No
 - No
 - Yes
 - Yes

- **Type?**
 - French
 - Yes
 - Italian
 - No
 - Thai
 - Burger
 - Yes

- **Bar?**
 - No
 - No
 - Yes
 - Yes

- **Raining?**
 - No
 - No
 - Yes
What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- “Occam’s Razor”: find the simplest hypothesis that fits the observations
 - Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, “The role of Occam’s razor in knowledge discovery”
- We desire small trees with informative nodes near the root
Decision Tree Miscellany

- Problems:
 - You have exponentially less data at lower levels
 - Too big of a tree can overfit the data
 - Greedy algorithms don’t necessarily yield the global optimum

- Handling continuous attributes
 - Split based on a threshold, chosen to maximize information gain

- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.
Comparison to some other classifiers

Advantages of decision trees over KNNs and neural nets

- Simple to deal with discrete features, missing values, and poorly scaled data
- Fast at test time
- More interpretable

Advantages of KNNs over decision trees

- Few hyperparameters
- Can incorporate interesting distance measures (e.g. shape contexts)

Advantages of neural nets over decision trees

- Able to handle attributes/features that interact in very complex ways (e.g. pixels)
○ We’ve seen many classification algorithms.

○ We can combine multiple classifiers into an ensemble, which is a set of predictors whose individual decisions are combined in some way to classify new examples
 ▶ E.g., (possibly weighted) majority vote

○ For this to be nontrivial, the classifiers must differ somehow, e.g.
 ▶ Different algorithm
 ▶ Different choice of hyperparameters
 ▶ Trained on different data
 ▶ Trained with different weighting of the training examples

○ Next lecture, we will study some specific ensembling techniques.
Today, we deepen our understanding of generalization through a bias-variance decomposition.

- This will help us understand ensembling methods.
Bias-Variance Decomposition

- Recall that overly simple models underfit the data, and overly complex models overfit.

- We can quantify this effect in terms of the bias/variance decomposition.
 - Bias and variance of what?
Bias-Variance Decomposition: Basic Setup

- Suppose the training set D consists of pairs (x_i, t_i) sampled independent and identically distributed (i.i.d.) from a single data generating distribution p_{sample}.
- Pick a fixed query point x (denoted with a green x).
- Consider an experiment where we sample lots of training sets independently from p_{sample}.
Bias-Variance Decomposition: Basic Setup

- Let’s run our learning algorithm on each training set, and compute its prediction y at the query point x.
- We can view y as a random variable, where the randomness comes from the choice of training set.
- The classification accuracy is determined by the distribution of y.
Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y is a random variable, we can talk about its expectation, variance, etc.
Recap of basic setup:

- Fix a query point x.
- Repeat:
 - Sample a random training dataset D i.i.d. from the data generating distribution p_{sample}.
 - Run the learning algorithm on D to get a prediction y at x.
 - Sample the (true) target from the conditional distribution $p(t|x)$.
 - Compute the loss $L(y, t)$.

Notice: y is independent of t. (Why?)

This gives a distribution over the loss at x, with expectation $\mathbb{E}[L(y, t) | x]$.

For each query point x, the expected loss is different. We are interested in minimizing the expectation of this with respect to $x \sim p_{\text{sample}}$.
Bayes Optimality

- For now, focus on squared error loss, $L(y, t) = \frac{1}{2} (y - t)^2$.
- A first step: suppose we knew the conditional distribution $p(t \mid x)$. What value y should we predict?
 - Here, we are treating t as a random variable and choosing y.
- Claim: $y_* = \mathbb{E}[t \mid x]$ is the best possible prediction.
- Proof:

 $$
 \mathbb{E}[(y - t)^2 \mid x] = \mathbb{E}[y^2 - 2yt + t^2 \mid x] \\
 = y^2 - 2y\mathbb{E}[t \mid x] + \mathbb{E}[t^2 \mid x] \\
 = y^2 - 2y\mathbb{E}[t \mid x] + \mathbb{E}[t \mid x]^2 + \text{Var}[t \mid x] \\
 = y^2 - 2yy_* + y_*^2 + \text{Var}[t \mid x] \\
 = (y - y_*)^2 + \text{Var}[t \mid x]
 $$
Bayes Optimality

\[\mathbb{E}[(y - t)^2 | x] = (y - y^*)^2 + \text{Var}[t | x] \]

- The first term is nonnegative, and can be made 0 by setting \(y = y^* \).
- The second term corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error.
 - This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.
 - Notice that this term doesn’t depend on \(y \).
- This process of choosing a single value \(y^* \) based on \(p(t | x) \) is an example of decision theory.
Bayes Optimality

- Now return to treating y as a random variable (where the randomness comes from the choice of dataset).
- We can decompose out the expected loss (suppressing the conditioning on x for clarity):

$$
E[(y - t)^2] = E[(y - y^*)^2] + \text{Var}(t)
$$

$$
= E[y^2* - 2y^*y + y^2] + \text{Var}(t)
$$

$$
= y^2* - 2y^*E[y] + E[y^2] + \text{Var}(t)
$$

$$
= y^2* - 2y^*E[y] + E[y]^2 + \text{Var}(y) + \text{Var}(t)
$$

$$
= (y^* - E[y])^2 + \underbrace{\text{Var}(y)}_{\text{variance}} + \underbrace{\text{Var}(t)}_{\text{Bayes error}}
$$

bias

variance

Bayes error
Bayes Optimality

\[
\mathbb{E}[(y - t)^2] = (y_* - \mathbb{E}[y])^2 + \text{Var}(y) + \text{Var}(t)
\]

- We just split the expected loss into three terms:
 - **bias**: how wrong the expected prediction is (corresponds to underfitting)
 - **variance**: the amount of variability in the predictions (corresponds to overfitting)
 - **Bayes error**: the inherent unpredictability of the targets

Even though this analysis only applies to squared error, we often loosely use “bias” and “variance” as synonyms for “underfitting” and “overfitting”.

Bias and Variance

- Throwing darts = predictions for each draw of a dataset

- Be careful, what doesn’t this capture?
 - We average over points \(x \) from the data distribution.