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Announcements

e Homework 2 is posted! Deadline Oct 14, 23:59.
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Overview

Design choices so far

task: regression, binary classification, multi-way classification

model: linear, logistic, hard coded feature maps, feed-forward
neural network

loss: squared error, 0-1 loss, cross-entropy
regularization L?, L?, early stopping

optimization: direct solutions, linear programming, gradient
descent (backpropagation)
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Neural Networks




Inspiration: The Brain

e Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.
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[Pic credit: www.moleculardevices.com]
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Inspiration: The Brain

@ For neural nets, we use a much simpler model neuron, or unit:

() _ _
output output weights bias

e J— 6 (wTx+ b
inputs T

I 9 xr
3 activation function inputs

o Compare with logistic regression: y = o(w'x + b)

e By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!
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Multilayer Perceptrons
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Multilayer Perceptrons

an output
unit

output layer
e We can connect lots of

units together into a
directed acyclic graph.

second hidden layer

e Typically, units are

grouped into layers. ahidden
unit

first hidden layer

o This gives a feed-forward
neural network.

input layer

a connection

depth an input

unit
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Multilayer Perceptrons

@ Each hidden layer ¢ connects IN;—1 input units to IV; output units.
@ In a fully connected layer, all input units are connected to all output units.

@ Note: the inputs and outputs for a layer are distinct from the inputs and
outputs to the network.

@ If we need to compute M outputs from N
inputs, we can do so using matrix multiplication.
This means we’ll be using a M x N matrix | /

@ The outputs are a function of the input units:
y =[f(x) =¢(Wx+b)

¢ is typically applied component-wise.

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron.

Intro ML (UofT) CSC311-Lec4 9/51



Multilayer Perceptrons

Some activation functions:

Rectified Linear

Identity Unit Soft ReLU
(ReLU)
Y=z y=logl+e?
y = max(0, z)
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Multilayer Perceptrons

Some activation functions:

Hard Threshold Logistic Hyperbolic Tangent

(tanh)
1 ifz>0 _ 1 . .
Y10 ifz<o0 Y= T3> yo oo

e*+e”~
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Multilayer Perceptrons

@ Each layer computes a function, so the network
computes a composition of functions:

H(WHx + b))

bt — £0)(x)
h® ) = ¢(W(2)h(1)+b(2))

h® — ;O

y =/ @)
@ Or more simply:
y = f(L) o--- Of(l)(x),

@ Neural nets provide modularity: we can implement
each layer’s computations as a black box.
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Feature Learning

Last layer:
o If task is regression: choose
y = fO (D)) = (wE) ThED 4 pE)
o If task is binary classification: choose
y = f(L)(h(Lfl)) = U((W(L))Th(Lfl) + b(L))

So neural nets can be viewed as a way of learning features:

linear regressor,
/ clasifier

e The goal:
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Feature Learning

@ Suppose we're trying to classify images of handwritten digits.
Each image is represented as a vector of 28 x 28 = 784 pixel values.

e Each first-layer hidden unit computes (b(wzT x). It acts as a
feature detector.

o We can visualize w by reshaping it into an image. Here’s an
example that responds to a diagonal stroke.
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Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

e Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.

Intro ML (UofT) CSC311-Lec4 15 /51



Expressivity

@ In Lecture 3, we introduced the idea of a hypothesis space H,
which is the set of input-output mappings that can be represented
by some model. Suppose we are deciding between two models A, B
with hypothesis spaces Ha, Hp.

o If Hp C H 4, then A is more expressive than B.

A can represent any
function f in Hp.

e Some functions (XOR) can’t be represented by linear classifiers.
Are deep networks more expressive?
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Expressivity—Linear Networks

@ Suppose a layer’s activation function was the identity, so the layer
just computes a affine transformation of the input

» We call this a linear layer

@ Any sequence of linear layers can be equivalently represented with
a single linear layer.

y = WEwWAwWO x
—_——

AW/

» Deep linear networks can only represent linear functions.

» Deep linear networks are no more expressive than linear regression.
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Expressive Power—Non-linear Networks

e Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well, i.e., for any f: X — T
there is a sequence f; € H with f; — f.

e This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)
» Even though ReLU is “almost” linear, it’s nonlinear enough.
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Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

1

1 ‘@ 1

Intro ML (UofT) CSC311-Lec4 19 /51



Multilayer Perceptrons

@ hy computes [[z; + 25 — 0.5 > 0]
» i.e. 1 OR 2o

@ ho computes [[z; + x5 — 1.5 > 0]
» ie. 1 AND z4

e y computes I[h; —hg — 0.5 > 0] =I[h; + (1 — ha) — 1.5 > 0]
> ie. hy AND (NOT hy) = 21 XOR x5
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Expressivity

Universality for binary inputs and targets:
e Hard threshold hidden units, linear output
o Strategy: 2” hidden units, each of which responds to one

particular input configuration

X X9 X3 t

@ Only requires one hidden layer, though it needs to be extremely

wide.
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Expressivity

e What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights
and biases:

1

08+

0.6+

04!

0.2-

R T R R S R ]

y = olx) y = o(52)

e This is good: logistic units are differentiable, so we can train them
with gradient descent.
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Expressivity—What is it good for?

o Universality is not necessarily a golden ticket.
» You may need a very large network to represent a given function.
» How can you find the weights that represent a given function?
e Expressivity can be bad: if you can learn any function, overfitting
is potentially a serious concern!
» Recall the polynomial feature mappings from Lecture 2.
Expressivity increases with the degree M, eventually allowing
multiple perfect fits to the training data.
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This motivated L? regularization.

@ Do neural networks overfit and how can we regularize them?
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Regularization and Overfitting for Neural Networks

@ The topic of overfitting (when & how it happens, how to regularize, etc.)
for neural networks is not well-understood, even by researchers!

» In principle, you can always apply L? regularization.
» You will learn more in CSC413.

@ A common approach is early stopping, or stopping training early,
because overfitting typically increases as training progresses.

Generalization error

Prediction Error
-

. Early stopping " -

— Training error

Training lterations

@ Unlike L? regularization, we don’t add an explicit R (@) term to our cost.
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Training neural networks with backpropagation
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Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

0

-915000 -500 0 500\\ 1000 1500 ;000
@ Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers

@ Conceptually, not any different from what we’ve seen so far — just
higher dimensional and harder to visualize!

@ We want to define a loss £ and compute the gradient of the cost dJ/dw,
which is the vector of partial derivatives.

» This is the average of d£/dw over all the training examples, so in
this lecture we focus on computing d£/dw.
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Univariate Chain Rule

o Let’s now look at how we compute gradients in neural networks.

e We've already been using the univariate Chain Rule.

o Recall: if f(x) and x(¢) are univariate functions, then

d dfds
E (z(t) = e dr
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Univariate Chain Rule

Recall: Univariate logistic least squares model

z=wx+b
y=o0(2)

1 2
L=5-1)

Let’s compute the loss derivatives g—f}, %—’g
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Univariate Chain Rule

How you would have done it in calculus class

1
ﬁ:i(a(warb)*t)Q aL o1 2
oL a1 o ~ap [T
= = | Z(o(wz +b) —t)?
0 7w |2 10 2
o :5%(0(w1+b)*t)
= 5 50 (o(we +b) - t)? b
) :(U(wx_:,_b)_t)%(a(wx-‘rb)—t)
= (o(wz + b) — t)—aw (o(wz +b) —1t)

= (o(wz +b) — t)o’ (wx + b)%(w:c +b)

= (o(wz +b) — )0’ (wa + b>a%<wx T (o(wn 4 b) — )0’ (wr 4 b)

— (J(wx —+ b) — t)a’(wm + b)l’

What are the disadvantages of this approach?
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Univariate Chain Rule

A more structured way to do it

Computing the derivatives:
Computing the loss:

z=wx+b dy
AL _dtdy _de
1 dz dy dz dy
L= 30— oL _dtd: _dt
ow dz dw dz
oL dLdz dL
9 dzdb  dz

y=o0(2)

Remember, the goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the derivatives.
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Univariate Chain Rule

o We can diagram out the computations using a computation
graph.

@ The nodes represent all the inputs and computed quantities, and
the edges represent which nodes are computed directly as a
function of which other nodes.

Compute Loss
_—

t

Computing the loss:

z=wx+b £
y=0(2) \
L

Compute Derivatives
—
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Univariate Chain Rule

A slightly more convenient notation:
@ Use 7 to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss: Computing the derivatives:

z=wxr+b

y=y—t

y=o0(z) z2=750"(2)
1 o
£:§(y—t)2 W=Zx
b=%
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Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the Multivariate Chain Rule!

Lo-Regularized regression

Wzﬁy_’ﬁ_’ﬁrcg
w :R/
z=wxr+b
y=o(z)
L=yt
R = %w2
Lreg = L+ AR
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Softmax regression

20 = E WejTj + by
J

e’k
Yp = —=——
2ope

L= —Ztklogyk
k
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Multivariate Chain Rule

e Suppose we have a function f(z,y) and functions x(¢) and y(¢).
(All the variables here are scalar-valued.) Then

d (9fdw af dy / \
&f(:):(t),y(t)) 97 dr +87y$ \ /

o Example:
f@,y) =y +e”
x(t) = cost
y(t) =¢*
e Plug in to Chain Rule:
ar _ofde  ofdy
dt  Oxdt Oy dt
= (ye™) - (—sint) + (1 + ze™) - 2t
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Multivariable Chain Rule

e In the context of backpropagation:

Mathematical expressions
to be evaluated

df _ofde ofdy

dt Oz dt  oydt N, 7
\ NN f
Values already computed | \ -
by our program / y/

@ In our notation:

o,

Y

ez g
= r— _—
a YA
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Backpropagation

Full backpropagation algorithm:
Let v1,...,vn be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

Fori=1,...,N
forward pass
Compute v; as a function of Pa(v;)

Fori=N-1,...,1

— —_ Av;
Ui = ZjeCh(vl) Vi Bo;

backward pass
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Backpropagation

Example: univariate logistic least squares regression

T t Backward pass:

Qz—’y—’ﬁ_’ﬁrog

u/ > R/

Forward pass:

z=wxr+b
y=o0(z)
£=Lty-v
’R:%w2
Lreg = L+ AR
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Backpropagation

Example: univariate logistic least squares regression

" t Backward pass:
Qz—’y_’ﬁ_’['rcg _
/ i s Lieg =1 . _dy
Uu >R m_T ALreg =V,
F d = AR =50'(2)
orward pass: _ Ereg A . % ﬁ@
z=wr+b L ="Cres dLreg - T ow dw
y=o(z) dc =zZr+Ru
= ['rcg _ o
L=t(y—1)’ d b=z%
2 y=L— b
— 2" =Ly-1)
Lrecg =L+ AR
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Backpropagation

) | 1) L
b \“:\ b \\j
\\\‘ \\\\‘ ti

T1——>21—h 14>y 1

o F

To—>2o—»h o—Y2

i

() 2 2)
1) W21 (5) Wa1
“’22 ll'.!

Forward pass:
j

hi = O'(Zi)
=3 w0

1 2
L= 5;(% —tk)

t

[
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Backward pass:
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Backpropagation

Z<;)\”“\11) bm\“‘\j Backward pass:
01 1 t B
3 N \ L=1

T1——>21—>hi—Y1.

>< >f£ Uk =L (yr — ti)

.I'Q—»ZQ—»I’LQ—.:I/Q W
m//uT {“)/T to Wy =7k hi
ey

“'ﬂlf 2 (2) b<2) o

u'.(>1>) w'? 21 k — Yk
Forward pass: o = Zy?wff;)
¢)) (1) K
2 = w; x; +b; v
R == ()
hi = o(z) w)) =z
= w2 h 47 rog.

1 2
L= 5;(%*%)
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Backpropagation

In vectorized form:

w Wij) t Backward pass:
b b

Forward pass:

z=WWx 4+ bl
h = o(z)
y = W®h 4+ p®

1
L=Z|t-y|?
St =l
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Backpropagation

In vectorized form:

w Wij) t Backward pass:
L£L=1
XY L=1
y=~L(y—t)
b(l) b(2) W(Q) _ yhT
Forward pass: b — v
z = Wx + b h=w®@Ty
h =o(z) Z=hoo(z)
y =W®h 4+ b® WO =zx"
1 T
L=yl bl =z

Intro ML (UofT) CSC311-Lec4

42 /51



Computational Cost

e Computational cost of forward pass: one add-multiply operation

Z w(l)x] + b

per weight

e Computational cost of backward pass: two add-multiply
operations per weight

hi =Y wrw))
k

@ Rule of thumb: the backward pass is about as expensive as two
forward passes.

e For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.
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Backpropagation

@ Backprop is the algorithm for efficiently computing gradients in neural
nets.

@ Gradient descent with gradients computed via backprop is used to train
the overwhelming majority of neural nets today.

» Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally
implausible.
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Gradient Checking
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Gradient Checking

e One way to compute d£/dw is numerical. This is useful for
checking algorithmically computed gradients, or gradient checking.
@ Recall the definition of the partial derivative:

ad flxi,...,xi+ h,...;zn) — f(z1, ..., Tiy ..., TN)

amif(xh“"xN):flzlE% h

e We can estimate the gradient numerically by fixing h to a small
value, e.g. 10719 on the right-hand side. This is known as finite
differences.
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Gradient Checking

e Even better: the two-sided definition

fx, ..,z +hy o oyzn) — f(z1, .o @ — hy oo

g (o0 = fn i

— exact
— one-sided
— two-sided

x—h x z+h
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Gradient Checking

Run gradient checks on small, randomly chosen inputs

Use double precision floats (not the default for TensorFlow,
PyTorch, etc.!)

Compute the relative error:

ja = bl
lal + o]

o The relative error should be very small, e.g. 1076
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Gradient Checking

o Gradient checking is really important!

o Learning algorithms often appear to work even if the math is
wrong.

e But:

» They might work much better if the derivatives are correct.
» Wrong derivatives might lead you on a wild goose chase.

o If you implement derivatives by hand, gradient checking is the
single most important thing you need to do to get your algorithm
to work well.
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Pytorch, Tensorflow, et al. (Optional)

@ If we construct our networks out of a series of “primitive” operations
(e.g., add, multiply) with specified routines for computing derivatives,
backprop can be done in a completely mechanical, and automatic, way.

@ This is called autodifferentiation or just autodiff.
@ There are many autodiff libraries (e.g., PyTorch, Tensorflow, Jax, etc.)

@ Practically speaking, autodiff automates the backward pass for you —
but it’s still important to know how things work under the hood.

@ In CSC413, you'll learn more about how autodiff works and use an
autodiff framework to build complex neural networks.
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Beyond Feed-forward Neural Networks (Optional)

For modern applications (vision, language, games) o
e
we use more complicated architectures.

o ot e 61000 o
oot 1 toa maps mage 160525
E: dez02 s21.mops

Bl

15 ra e QU

rr'_ 5

"
CNN I e |~ Comm
s
- e
g [ — Lo
Conouimt | Simareiey  Conoktons St Pt mesin
T~ Postora
3 Ercoang Q9 ¢ Q i

ot Catput
Embedcng Embeding

1024

e
s =
— [ransformer
ooz coNV 3
G(2)

"le" :i"chat":: "s™ : “assit" et
Initial } e

RNN RNN|5 RNN| [ RN Final QDL

RNN & ‘ ; i

[ | ;g =

“the" - - "cat " "sat" ; "le" :i"chat":: "s™ : "assit" —

CSC311-Lec4

51 /51



