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Overview

o Classification: predicting a discrete-valued target

» Binary classification: predicting a binary-valued target
» Multiclass classification: predicting a discrete(> 2)-valued target

e Examples of binary classification
» predict whether a patient has a disease, given the presence or
absence of various symptoms
> classify e-mails as spam or non-spam
» predict whether a financial transaction is fraudulent
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Overview

Binary linear classification

e classification: given a D-dimensional input x € R predict a
discrete-valued target
e binary: predict a binary target t € {0,1}
» Training examples with t = 1 are called positive examples, and

training examples with ¢ = 0 are called negative examples. Sorry.
» t € {0,1} or t € {—1,+1} is for computational convenience.

@ linear: model prediction y is a linear function of x, followed by a
threshold r:

2=w'x+b

1 ifz>r
y= 0 ifz<r
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Some Simplifications

Eliminating the threshold
e We can assume without loss of generality (WLOG) that the
threshold r = 0:
w x+b>r <= w'x+b—1r>0.
~—~—
2wo
Eliminating the bias
o Add a dummy feature xg which always takes the value 1. The
weight wg = b is equivalent to a bias (same as linear regression)
Simplified model
o Receive input x € RP*+! with zg = 1:

Z:WTX
(1 ifz>0
Y=YV 0 ifz<o
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Examples

@ Let’s consider some simple examples to examine the properties of
our model

o Let’s focus on minimizing the training set error, and forget about
whether our model will generalize to a test set.
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Examples

@ Suppose this is our training set, with the dummy feature x(
included.

e Which conditions on wp, w; guarantee perfect classification?
» When 21 =0, need: z = woxg + w1z >0 < wg >0
» When z1 =1, need: 2z = woxp + w11 <0 <= wo+ wy <0

e Example solution: wy = 1,w; = —2

@ Is this the only solution?
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Examples

AND
o x1 X2 |t Z = Woxo + W1x1 + WwaTo
1 0 00 need: wg < 0
10 110 € n 0
1 1 010 need: wg + wg <
1 1 111 need: wo +w; <0
need: wg + wi + wo >0
Example solution: wg = —1.5, w1 =1, wy =1
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The Geometric Picture

Input Space, or Data Space for NOT example

T

o

Training examples are points

Weights (hypotheses) w can be represented by half-spaces
Hy={x:w'x>0}, H. = {x:w'x <0}

» The boundaries of these half-spaces pass through the origin (why?)
o The boundary is the decision boundary: {x:w'x = 0}
» In 2-D, it’s a line, but in high dimensions it is a hyperplane

If the training examples can be perfectly separated by a linear
decision rule, we say data is linearly separable.
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The Geometric Picture

Weight Space

wo Z 0
wo +wp < 0

Weights (hypotheses) w are points

e Each training example x specifies a half-space w must lie in to be
correctly classified: w'x > 0ift = 1.
For NOT example:

» =121 =0,t =1 = (wp,w1) € {w:wy >0}

> zo=1,11=1,t=0 = (wo,w1) € {w : wo +wy <0}

The region satisfying all the constraints is the feasible region; if
this region is nonempty, the problem is feasible, otw it is infeasible.
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The Geometric Picture

@ The AND example requires three dimensions, including the dummy one.

@ To visualize data space and weight space for a 3-D example, we can look
at a 2-D slice.

@ The visualizations are similar.

» Feasible set will always have a corner at the origin.
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The Geometric Picture

Visualizations of the AND example

Weight Space

w2

Data Space

a ]

w1
<+

- Slice for wg = —1.5 for the

- Slice for zg = 1 and

constraints
- example sol: wop=—1.5, w1 =1, we=1 Cwe < 0
- decision boundary: 0
-wp+we <0
woTo+wix1+wexrs =0 ~wo 4wy <0

— —1.54x1+22=0

-wg+wy+ws >0
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Summary — Binary Linear Classifiers

o Summary: Targets ¢ € {0,1}, inputs x € RP+! with 29 = 1, and
model is defined by weights w and

Z:WTX

1 ifz>0
Y=V 0 ifz<o

e How can we find good values for w?

o If training set is linearly separable, we could solve for w using
linear programming
» We could also apply an iterative procedure known as the perceptron
algorithm (but this is primarily of historical interest).
o If it’s not linearly separable, the problem is harder
» Data is almost never linearly separable in real life.
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Towards Logistic Regression
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Loss Functions

o Instead: define loss function then try to minimize the resulting
cost function

» Recall: cost is loss averaged (or summed) over the training set

e Seemingly obvious loss function: 0-1 loss

Lo-1(y,t) = { (1) Ez ;i
=Ty #1]
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Attempt 1: 0-1 loss

o Usually, the cost J is the averaged loss over training examples; for
0-1 loss, this is the misclassification rate:

1 N
- (2) (2)
J =% ;1 Iy' # ']
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Attempt 1: 0-1 loss

e Problem: how to optimize? In general, a hard problem (can be
NP-hard)

e This is due to the step function (0-1 loss) not being nice
(continuous/smooth/convex etc)
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Attempt 1: 0-1 loss

Minimum of a function will be at its critical points.

Let’s try to find the critical point of 0-1 loss
Chain rule:

8[,071 . aﬁofl 82’
ow; 0z Ow,

e But 0Ly_1/0z is zero everywhere it’s defined!

0.0

-20 -15 -10 -05 00 05 10 15 20
z

» 0Ly—1/0w; = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
» Almost any point has 0 gradient!
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Attempt 2: Linear Regression

@ Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as relaxation with a
smooth surrogate loss function.

@ One problem with Lg_1: defined in terms of final prediction, which
inherently involves a discontinuity

o Instead, define loss in terms of w' x directly

» Redo notation for convenience: z = w'x
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Attempt 2: Linear Regression

o We already know how to fit a linear regression model. Can we use
this instead?

T

z = X

ﬁSE(Z,t) =

g

(2 - 1)?

N | =

@ Doesn’t matter that the targets are actually binary. Treat them as
continuous values.

e For this loss function, it makes sense to make final predictions by
thresholding z at £ (why?)
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Attempt 2: Linear Regression

The problem:

large
residual

@ The loss function hates when you make correct predictions with
high confidence!

e If t =1, it’s more unhappy about z = 10 than z = 0.
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Attempt 3: Logistic Activation Function

e There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

@ The logistic function is a kind of sigmoid, or 1
S-shaped function: 0

1 >04

U(Z): 1+€—Z W

o
R R 2 1
7

o o1 (y) =log(y/(1 —y)) is called the logit.
@ A linear model with a logistic nonlinearity is known as log-linear:

Z = WTX
y=o(z)
1
Lsg(y,t) = 5(9 —t)°.

o Used in this way, o is called an activation function.
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Attempt 3: Logistic Activation Function

The problem:
(plot of Lgg as a function of z, assuming ¢ = 1)

0.5

0.4
0.3

o _oc o
ow; 0z ow;

0.2

loss

0.1

0.0

e For z < 0, we have o(z) =~ 0.

° g—f ~ 0 (check!) = E?Tﬁj ~ (0 = derivative w.r.t. w; is small
= wj is like a critical point

o If the prediction is really wrong, you should be far from a critical
point (which is your candidate solution).
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Logistic Regression

@ Because y € [0,1], we can interpret it as the estimated probability
that t = 1. If t = 0, then we want to heavily penalize y ~ 1.

e The pundits who were 99% confident Clinton would win were
much more wrong than the ones who were only 90% confident.

e Cross-entropy loss (aka log loss) captures this intuition:

5

4
| —logy ift=1 é
Leg(y,t) = { —log(l—y) ift=0 53 1 =0
= ~tlogy — (1—t)log(1—y) &
Y1
8.0 0.2 0.4 0.6 0.8 1.0
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Logistic Regression

Logistic Regression:

—— logistic + CE

Z:WTX
y=o0(z)
- 1
1l 4ez

Leg = —tlogy — (1 —1t)log(1 —y)

Plot is for target t = 1.
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Logistic Regression — Numerical Instabilities

e If we implement logistic regression naively, we can end up with
numerical instabilities.

e Consider: t =1 but you're really confident that z < 0.

o If y is small enough, it may be numerically zero. This can cause
very subtle and hard-to-find bugs.

y=0(2) =y=0
Log = —tlogy — (1 —t)log(1 —y) = computes log0
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Logistic Regression — Numerically Stable Version

e Instead, we combine the activation function and the loss into a
single logistic-cross-entropy function.

Licn(,t) = Lor(o(2),1) = tlog(1 + %) + (1 — ) log(1 + ¢7)

e Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions: (for t = 1)

3.0 _
—— least squares
2:5  logitic 1
= |ogistic
2.0 1
%))
5 15
1.0
0.5
0.0
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Gradient Descent for Logistic Regression

e How do we minimize the cost J for logistic regression? No direct
solution.
» Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have
an explicit solution.
e However, the logistic loss is a convex function in w, so let’s
consider the gradient descent method from last lecture.
» Recall: we initialize the weights to something reasonable and
repeatedly adjust them in the direction of steepest descent.
» A standard initialization is w = 0. (why?)
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Gradient of Logistic Loss

Back to logistic regression:

Leor(y,t) = — tlog(y) — (1 —t)log(1 —y)
y=1/(1+e*) and z=w'x
Therefore
OLcE OLcg Oy Oz o t 1-—-1
ow; 9y 0z Ow; y+1—y Yy =)

=(y —t)z;

(verify this)

Gradient descent (coordinatewise) update to find the weights of logistic
regression:

oT

=wj - NZ t(l z)
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Gradient Descent for Logistic Regression

Comparison of gradient descent updates:

e Linear regression:

N
_a _() x(®)
W — W NZ t\

o Logistic regression:

e (1) _ 40y x (@)
W W N;(y ") x

e Not a coincidence! These are both examples of generalized linear
models. But we won’t go in further detail.

e Notice % in front of sums due to averaged losses. This is why you
need smaller learning rate when cost is summed losses (o/ = a/N).
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Multiclass Classification and Softmax Regression
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Overview

o Classification: predicting a discrete-valued target

» Binary classification: predicting a binary-valued target
» Multiclass classification: predicting a discrete(> 2)-valued target

e Examples of multi-class classification

» predict the value of a handwritten digit
» classify e-mails as spam, travel, work, personal
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Multiclass Classification

o Classification tasks with more than two categories:

cOwli N (4A 12

puzen 2233

26794977658

AT IAWA RS

89378409497
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Multiclass Classification

o Targets form a discrete set {1,..., K}.

e It’s often more convenient to represent them as one-hot vectors, or
a one-of-K encoding;:

t=(0,...,0,1,0,...,0) e RE

~
entry k is 1
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Multiclass Linear Classification

We can start with a linear function of the inputs.

Now there are D input dimensions and K output dimensions, so
we need K x D weights, which we arrange as a weight matrix W.

o Also, we have a K-dimensional vector b of biases.
@ A linear function of the inputs:
D
2k = Zwijj + bk for k= 1,2, ...,K
j=1

We can eliminate the bias b by taking W € RE*(P+1) and adding
a dummy variable zg = 1. So, vectorized:

z=Wx+b orwithdummy zo =1 z=Wx
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Multiclass Linear Classification

o How can we turn this linear prediction into a one-hot prediction?

e We can interpret the magnitude of z; as an measure of how much
the model prefers k as its prediction.

e If we do this, we should set

)1 i=argmaxy 2y
vi 0 otherwise

o Exercise: how does the case of K = 2 relate to the prediction
rule in binary linear classifiers?
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Softmax Regression

@ We need to soften our predictions for the sake of optimization.

o We want soft predictions that are like probabilities, i.e., 0 < yp <1
and ).y = 1.

e A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

e’k

yr = softmax(z1,...,2x)r = e
k/

» Outputs can be interpreted as probabilities (positive and sum to 1)

» If zj, is much larger than the others, then softmax(z); ~ 1 and it
behaves like argmax.

» Exercise: how does the case of K = 2 relate to the logistic
function?

o The inputs z; are called the logits.
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Softmax Regression

o If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(y,t) == trlogys
k=1

= —t"(logy),

where the log is applied elementwise.

o Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Softmax Regression

e Softmax regression (with dummy z¢ = 1):

z = Wx
y = softmax(z)
Lep =t (logy)
o Gradient descent updates can be derived for each row of W:

8ECE . 8['CE ] azk

— — t .
(9Wk 8zk 6wk (yk k) X
LS )0
Wi — Wi — OzN ;(yk — 1, )X(Z)

e Similar to linear/logistic reg (no coincidence) (verify the update)
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Linear Classifiers vs. KNN
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Linear Classifiers vs. KNN

Linear classifiers and KNN have very different decision boundaries:

Linear Classifier K Nearest Neighbours

I e i r/\\

Intro ML (UofT) CSC311-Lec3 41 /43



Linear Classifiers vs. KNN

Advantages of linear classifiers over KNN?

Advantages of KNN over linear classifiers?
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A Few Basic Concepts

@ A hypothesis is a function f: X — 7T that we might use to make
predictions (recall X is the input space and T is the target space).

@ The hypothesis space H for a particular machine learning model or
algorithm is set of hypotheses that it can represent.

» E.g., in linear regression, H is the set of functions that are linear in
the data features

» The job of a machine learning algorithm is to find a good
hypothesis f € H

@ The members of H, together with an algorithm’s preference for some
hypotheses of H over others, determine an algorithm’s inductive bias.

» Inductive biases can be understood as general natural patterns or
domain knowledge that help our algorithms to generalize;
E.g., linearity, continuity, simplicity (Ly regularization) ...

» The so-called No Free Lunch (NFL) theorems assert that if
datasets/problems were not naturally biased, no ML algorithm
would be better than another
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A Few Basic Concepts

o If an algorithm’s hypothesis space H can be defined using a finite
set of parameters, denoted 6, we say the algorithm is parametric.
» In linear regression, 8 = (w,b)
» Other examples: logistic regression, neural networks, k-means and
Gaussian mixture models

o If the members of H are defined in terms of the data, we say that
the algorithm is non-parametric.

» In k-nearest neighbors, the learned hypothesis is defined in terms of
the training data

» Other examples: Gaussian processes, decision trees, support vector
machines, kernel density estimation

» These models can sometimes be understood as having an infinite
number of parameters
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Limits of Linear Classification

Some datasets are not linearly separable, e.g. XOR

Visually obvious, but how to show this?
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Limits of Linear Classification

Showing that XOR is not linearly separable (proof by
contradiction)

@ If two points lie in a half-space, line segment connecting them also lie in
the same halfspace.

@ Suppose there were some feasible weights (hypothesis). If the positive
examples are in the positive half-space, then the green line segment must
be as well.

@ Similarly, the red line segment must line within the negative half-space.

T2

1

@ But the intersection can’t lie in both half-spaces. Contradiction!
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Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps,
just like for linear regression. E.g., for XOR:

O = = O

o This is linearly separable. (Try it!)
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Next time...

Feature maps are hard to design well, so next time we’ll see how to
learn nonlinear feature maps directly using neural networks...
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