CSC 311: Introduction to Machine Learning

Lecture 2 - Linear Methods for Regression, Optimization

Roger Grosse Chris Maddison ~ Juhan Bae Silviu Pitis

University of Toronto, Fall 2020

Intro ML (UofT) CSC311-Lec2 1/53

Announcements

e Homework 1 is posted! Deadline Sept 30, 23:59.

e Instructor hours are announced on the course website. (TA OH
TBA)

@ No ProctorU!

Intro ML (UofT) CSC311-Lec2 2 /53

Overview

@ Second learning algorithm of the course: linear regression.

» Task: predict scalar-valued targets (e.g. stock prices)
» Architecture: linear function of the inputs

e While KNN was a complete algorithm, linear regression exemplifies
a modular approach that will be used throughout this course:
» choose a model describing the relationships between variables of
interest
> define a loss function quantifying how bad the fit to the data is

» choose a regularizer saying how much we prefer different candidate
models (or explanations of data)

» fit a model that minimizes the loss function and satisfies the
constraint /penalty imposed by the regularizer, possibly using an
optimization algorithm

e Mixing and matching these modular components give us a lot of
new ML methods.

Intro ML (UofT) CSC311-Lec2 3/53

Supervised Learning Setup

4.0

3.5

3.0 . o
.

2.5

15
1.0

0.5

0.0

In supervised learning;:
@ There is input x € X, typically a vector of features (or covariates)
e There is target ¢t € T (also called response, outcome, output, class)

e Objective is to learn a function f : X — T such that t ~ y = f(x)
based on some data D = {(x®,t®) for i = 1,2,...,N}.

Intro ML (UofT) CSC311-Lec2 4/53

Linear Regression - Model

@ Model: In linear regression, we use a linear function of the features
x = (z1,...,2p) € RP to make predictions y of the target value ¢t € R:

y =f(x) :ijl’j-i-b

» y is the prediction
» w is the weights
> b is the bias (or intercept)

@ w and b together are the parameters

@ We hope that our prediction is close to the target: y ~ t.

Intro ML (UofT) CSC311-Lec2 55/453

What is Linear? 1 feature vs D features

If we have only 1 feature:
y = wx + b where w, x,b € R.

@ y is linear in x.

o If we have D features:
y=Ww' X+ bwhere w,x € RP,
beR

@ y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.

Intro ML (UofT) CSC311-Lec2 6 /53

Linear Regression

We have a dataset D = {(x®, (") for i = 1,2, ..., N} where,
o x() = (z§ ® xg), ...,x%))T € RP are the inputs (e.g. age, height)
o t() € R is the target or response (e.g. income)

o predict t) with a linear function of x(*:

2.0{ — Fitted line L]
® Data

o t0) ~ y = wTx(4
@ Different (w,b) define different lines.

y: response
=)
n

@ We want the “best” line (w,b).

@ How to quantify “best”?

x: features

Intro ML (UofT) CSC311-Lec2 7/53

Linear Regression - Loss Function

e A loss function L(y,t) defines how bad it is if, for some example x,
the algorithm predicts y, but the target is actually ¢.

@ Squared error loss function:

L(y,t)=3@y—1)°

@ y — t is the residual, and we want to make this small in magnitude

e The % factor is just to make the calculations convenient.
e Cost function: loss function averaged over all training examples

1 Ny 2
T(w.b) = 55> (v 1)

1 & 2
- = T <i)+b—t<i))
QNZ(W x

e Terminology varies. Some call “cost” empirical or average loss.

Intro ML (UofT) CSC311-Lec2 8/53

Vectorization

o Notation-wise, ﬁ Zl]\il (y(i) — t(i))2 gets messy if we expand y(i):

1 X D 2

(%) (@)
AAA,ZE: j{: (1ij~ %*b) —t)
2N £ <J i

j=1
@ The code equivalent is to compute the prediction using a for loop:

y=bhb
for j in range(M):
y +=wlil * x[i]

e Excessive super/sub scripts are hard to work with, and Python
loops are slow, so we vectorize algorithms by expressing them in
terms of vectors and matrices.

vv:(U)lvuwu}D)T x:(mlw“,mD)T
y ::\vjix-+ b

o This is simpler and executes much faster:
y = hp.dot(w, X) + b

Intro ML (UofT) CSC311-Lec2 9/53

Vectorization

Why vectorize?
e The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!
@ Vectorized code is much faster

» Cut down on Python interpreter overhead
» Use highly optimized linear algebra libraries (hardware support)
» Matrix multiplication very fast on GPU (Graphics Processing Unit)

Switching in and out of vectorized form is a skill you gain with practice
@ Some derivations are easier to do element-wise

e Some algorithms are easier to write/understand using for-loops
and vectorize later for performance

Intro ML (UofT) CSC311-Lec2 10 /53

Vectorization

@ We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

one feature across
all training examples

xT 80| 3 0 N
X — xg; - g —51 52 g amln a0
) —

e Computing the predictions for the whole dataset:

Xw + bl = : = : =y
wlx(N) 4 y)

Intro ML (UofT) CSC311-Lec2 11 /53

Vectorization

o Computing the squared error cost across the whole dataset:

y = Xw + b1
J = ny—tHz

o Sometimes we may use J = ||y — t||%, without a normalizer. This
would correspond to the sum of losses, and not the averaged loss.
The minimizer does not depend on N (but optimization might!).

@ We can also add a column of 1’s to design matrix, combine the
bias and the weights, and conveniently write

1 [X(l)]T b
X = |1 [X(Q)]T e RVX(DHD) nd w — Z; c RP+1
1

Then, our predictions reduce to y = Xw.

Intro ML (UofT) CSC311-Lec2 12 /53

Solving the Minimization Problem
We defined a cost function. This is what we’d like to minimize.

Two commonly applied mathematical approaches:
@ Algebraic, e.g., using inequalities:
> to show z* minimizes f(z), show that Vz, f(z) > f(z*)
» to show that a = b, show that a > b and b > «a

@ Calculus: minimum of a smooth function (if it exists) occurs at a
critical point, i.e. point where the derivative is zero.

» multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient).

Solutions may be direct or iterative

@ Sometimes we can directly find provably optimal parameters (e.g. set the
gradient to zero and solve in closed form). We call this a direct solution.

@ We may also use optimization techniques that iteratively get us closer to
the solution. We will get back to this soon.

Intro ML (UofT) CSC311-Lec2 13 /53

Direct Solution I: Linear Algebra

@ We seek w to minimize || Xw — t||2, or equivalently | Xw — t||
o range(X) = {Xw|w € R} is a D-dimensional subspace of RY.

@ Recall that the closest point y* = Xw* in subspace range(X) of RY to
arbitrary point t € RV is found by orthogonal projection.

. e We have (y* —t) L Xw, ¥w € RP

@ Why is y* the closest point to t7

» Consider any z = Xw
» By Pythagorean theorem and the
trivial inequality (22 > 0):
Iz —t* = lly" = t]* + [ly" — =/
g > [ly* —t)?

Intro ML (UofT) CSC311-Lec2 14 /53

Direct Solution I: Linear Algebra

e From the previous slide, we have (y* —t) L Xw, ¥Yw € R”

e Equivalently, the columns of the design matrix X are all
orthogonal to (y* — t), and we have that:

X' (y*—t)=0
X'Xw* -~ X"t =0
X'Xw* =Xt
wh = (XTX)"1X Tt
e While this solution is clean and the derivation easy to remember,

like many algebraic solutions, it is somewhat ad hoc.

@ On the hand, the tools of calculus are broadly applicable to
differentiable loss functions...

Intro ML (UofT) CSC311-Lec2 15 /53

Direct Solution II: Calculus

e Partial derivative: derivative of a multivariate function with
respect to one of its arguments.

i T f(lil—i-h,xz)—f(l’l,xg)
gy (B w2) =l n

e To compute, take the single variable derivative, pretending the
other arguments are constant.

e Example: partial derivatives of the prediction y

oy _ 9 - % _ 0 -
8’U)j = 8’11}]‘ [ZIIUJ/‘T]/ +b] b = b |:Z,’LU]/CC]/ —|—b]
J J

=Ty =1

Intro ML (UofT) CSC311-Lec2 16 / 53

Direct Solution II: Calculus

o For loss derivatives, apply the chain rule:

o _dc oy

ow; dy dw, % dL 9y
I B B o ob dyab
- 4007 e
=(y—t)z,

e For cost derivatives, use linearity and average over data points:
a7 _ 1 N j i)Y (%) d
SR DY MUCELIE N B VLT

e Minimum must occur at a point where partial derivatives are zero.

. 0
=0 (), % =0

(if 0 /Ow; # 0, you could reduce the cost by changing w;)

Intro ML (UofT) CSC311-Lec2 17 /53

Direct Solution II: Calculus

@ The derivation on the previous slide gives a system of linear
equations, which we can solve efficiently.

@ As is often the case for models and code, however, the solution is
easier to characterize if we vectorize our calculus.

o We call the vector of partial derivatives the gradient
o Thus, the “gradient of f: R” — R”, denoted V f(w), is:

(5osw..... 38Df<w>)T

ow1 w

e The gradient points in the direction of the greatest rate of increase.

e Analogue of second derivative (the “Hessian” matrix):
2

V2f(w) € RP*D is a matrix with [V2f(w)];; = #&Wf(w).

Intro ML (UofT) CSC311-Lec2 18 /53

Aside: The Hessian Matrix

@ Analogue of second derivative (the Hessian): V2 f(w) € RP*P is a
matrix with [V f(w)];j = 52255~ f (w).

» Recall from multivariable calculus that for continuously
2 2
differentiable f, aw?awj f= aw?(,jwi f, so the Hessian is symmetric.

@ The second derivative test in single variable calculus: a critical point is a
local minimum if the second derivative is positive.

@ The multivariate analogue involves the eigenvalues of the Hessian.

» Recall from linear algebra that the eigenvalues of a symmetric
matrix (and therefore the Hessian) are real-valued.

» If all of the eigenvalues are positive, we say the Hessian is
positive definite.

» A critical point (V f(w) = 0) of a continuously differentiable
function f is a local minimum if the Hessian is positive definite.

Intro ML (UofT) CSC311-Lec2 19 /53

Aside: The Hessian Matrix

e Visualization:!

22 4y 22 22—

(definite) (semidefinite) (indefinite)

Image source: mkwiki.org
Intro ML (UofT) CSC311-Lec2 20/53

Direct Solution II: Calculus

We seek w to minimize J(w) = £[|Xw — t||?

Taking the gradient with respect to w (see course notes for
additional details) we get:

VawJ(w)=X"Xw-X"t =0

We get the same optimal weights as before:

wh = (XTX)"1X Tt

Linear regression is one of only a handful of models in this course
that permit direct solution.

Intro ML (UofT) CSC311-Lec2 21 /53

Feature Mapping (Basis Expansion)

The relation between the input and output may not be linear.

@ We can still use linear regression by mapping the input features to
another space using feature mapping (or basis expansion).
¥(x) : RP — R? and treat the mapped feature (in R?) as the
input of a linear regression procedure.

o Let us see how it works when x € R and we use a polynomial
feature mapping.

Intro ML (UofT) CSC311-Lec2 22 /53

Polynomial Feature Mapping

If the relationship doesn’t look linear, we can fit a polynomial.

0 1

Fit the data using a degree-M polynomial function of the form:

M
Y = wo + w1 + w2x2 + ...+ waM = Zwixi
i=0
o Here the feature mapping is 9 (z) = [1,z, 22, ...,2M]T.
o We can still use linear regression to find w since y = () 'w is

linear in wq, w,
@ In general, 1) can be any function. Another example:
¥(z) = [1,sin(27x), cos(2mz), sin(47x),

Intro ML (UofT) CSC311-Lec2 23 /53

Polynomial Feature Mapping with M =0

Yy = wo
1 o M=0
o

t

o >—o o
0 i

o

-1

0 1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec2 24 /53

Polynomial Feature Mapping with M =1

Yy = wo + wix

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec2 25 /53

Polynomial Feature Mapping with M = 3

2
Y = Wy + W1T + WX +w3:c3

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (U CSC311-Lec2 26 /53

Polynomial Feature Mapping with M =9

y:wg+w1$+w2x2+w3x3+...+w9x9

-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) CSC311-Lec2 27 /53

Model Complexity and Generalization

Underfitting (M=0):
Overfitting (M=9):

—©— Training
—O— Test

model is too simple — does not fit the data.
model is too complex — fits perfectly.

M =0 1
t

Good model (M

Intro ML (UofT)

1 0

=3): Achieves small test error (generalizes well).

CSC311-Lec2

28 /53

Model Complexity and Generalization

M=0 M=1 M=3 M=9

wy | 019 082 031 035 o
wy 127 799 232.37

w} -25.43 -5321.83 !

w} 1737 4856831

w} -231639.30

ws 640042.26

wy 106180052 _,

ws 1042400.18

w} -557682.99

wy 125201.43 0 a1

e As M increases, the magnitude of coefficients gets larger.
e For M =9, the coefficients have become finely tuned to the data.

o Between data points, the function exhibits large oscillations.

Intro ML (U CSC311-Lec2 29 /53

Regularization

@ The degree M of the polynomial controls the model’s complexity.

@ The value of M is a hyperparameter for polynomial expansion,
just like k£ in KNN. We can tune it using a validation set.

o Restricting the number of parameters / basis functions (M) is a
crude approach to controlling the model complexity.

e Another approach: keep the model large, but regularize it

» Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another

Intro ML (UofT) CSC311-Lec2 30/53

L?* (or {3) Regularization

@ We can encourage the weights to be small by choosing as our
regularizer the L? penalty.

1
R(w) = Lwl = 5 >
J

» Note: To be precise, the L? norm is Euclidean distance, so we’re
regularizing the squared L? norm.

@ The regularized cost function makes a tradeoff between fit to the
data and the norm of the weights.

Tueg(w) = T(w) 4 VR(w) = T (w) + 5 3" u?

o If you fit training data poorly, J is large. If your optimal weights
have high values, R is large.

e Large) penalizes weight values more.

o Like M,) is a hyperparameter we can tune with a validation set.

Intro ML (UofT) CSC311-Lec2 31/53

L?* (or {3) Regularization

@ The geometric picture:

loss

regularizer

Intro ML (UofT) CSC311-Lec2

32/53

L? Regularized Least Squares: Ridge regression

For the least squares problem, we have J(w) = 5k || Xw — t||2.

e When A > 0 (with regularization), regularized cost gives

2

i . o1 A
Wihdge = argmin Jyeg(W) = argmin — || Xw — t||% + = w5

=(X"X +AND)1X Tt

e The case A = 0 (no regularization) reduces to least squares
solution!

o Note that it is also common to formulate this problem as
argminy, 3 || Xw — t||3 + %HWH% in which case the solution is
wide — (XTX + A1)~ X Tt

Intro ML (UofT) CSC311-Lec2 33y453]

Conclusion so far

Linear regression exemplifies recurring themes of this course:
@ choose a model and a loss function

o formulate an optimization problem
@ solve the minimization problem using one of two strategies

» direct solution (set derivatives to zero)
» gradient descent (next topic)

@ vectorize the algorithm, i.e. represent in terms of linear algebra
e make a linear model more powerful using features

e improve the generalization by adding a regularizer

Intro ML (UofT) CSC311-Lec2 34 /53

Gradient Descent

o Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

e Many times, we do not have a direct solution: Taking derivatives of
J w.r.t w and setting them to 0 doesn’t have an explicit solution.

o Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

I(w)

w " “’1</w27

Intro ML (UofT) CSC311-Lec2 350/453]

A
A

Gradient Descent

@ Observe:
» if 0J/Ow; > 0, then increasing w; increases J.
» if 0J/0w; < 0, then increasing w; decreases J.

o The following update always decreases the cost function for small
enough o (unless 07 /0w; = 0):

wj; <—w~—aa—j
J J 811)]'

e a > 0 is a learning rate (or step size). The larger it is, the faster w
changes.

» We'll see later how to tune the learning rate, but values are
typically small, e.g. 0.01 or 0.0001.

» If cost is the sum of N individual losses rather than their average,
smaller learning rate will be needed (o' = a/N).

Intro ML (UofT) CSC311-Lec2 36 /53

Gradient Descent

e This gets its name from the gradient:

gi

w1
Vo = 9T _ | .

ow o7

dwp

» This is the direction of fastest increase in 7.
e Update rule in vector form:

W W — a—j
a@w

And for linear regression we have:

w<—w——z —t(x(?)

@ So gradient descent updates w in the direction of fastest decrease.
@ Observe that once it converges, we get a critical point, i.e. g—v‘z =

Intro ML (UofT) CSC311-Lec2 37/53

Gradient Descent for Linear Regression

@ The squared error loss of linear regression is a convex function.

e Even for linear regression, where there is a direct solution, we
sometimes need to use GD.
e Why gradient descent, if we can find the optimum directly?

» GD can be applied to a much broader set of models
» GD can be easier to implement than direct solutions
» For regression in high-dimensional space, GD is more efficient than
direct solution
» Linear regression solution: (X' X) !XTt
» Matrix inversion is an O(D?) algorithm
» Each GD update costs O(ND)
> Or less with stochastic GD (SGD, in a few slides)
» Huge difference if D > 1

Intro ML (UofT) CSC311-Lec2 38 /53

Gradient Descent under the L? Regularization
e Gradient descent update to minimize J:
W — W — aa—wj

o The gradient descent update to minimize the L? regularized cost
J + AR results in weight decay:

w(—w—ai(J+)\R)

ow
W—@(?i%—/\)
:(1—a)\)w—ag§

Intro ML (UofT) CSC311-Lec2 39/53

Learning Rate (Step Size)

o In gradient descent, the learning rate « is a hyperparameter we
need to tune. Here are some things that can go wrong:

a too large: « much too large:
oscillations instability

a too small:
slow progress

e Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try
0.1,0.03,0.01,...).

CSC311-Lec2 40 /53

Intro ML (UofT)

Training Curves

e To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

e Warning: in general, it’s very hard to tell from the training curves
whether an optimizer has converged. They can reveal major
problems, but they can’t guarantee convergence.

Intro ML (U CSC311-Lec2 41 /53

Stochastic Gradient Descent

@ So far, the cost function J has been the average loss over the
training examples:

1 N N
Nz:n_ Z 9), 1),

(0 denotes the parameters; e.g., in linear regression, 8 = (w, b))

o By linearity,
0T 1L oaLh

‘%_N,lw‘

1=

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

e Batch training is impractical if you have a large dataset IV > 1
(e.g. millions of training examples)!

Intro ML (UofT) CSC311-Lec2 42 /53

Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

1— Choose i uniformly at random,
oL@
2— 6« 06—
— T

@ Cost of each SGD update is independent of N!

@ SGD can make significant progress before even seeing all the data!

@ Mathematical justification: if you sample a training example uniformly
at random, the stochastic gradient is an unbiased estimate of the batch
gradient:

oL@ 1 N o) 8T
90 | T NZ 90 09

Intro ML (UofT) CSC311-Lec2 43 /53

Stochastic Gradient Descent

o Problems with using single training example to estimate gradient:
» Variance in the estimate may be high
» We can’t exploit efficient vectorized operations
e Compromise approach:
» compute the gradients on a randomly chosen medium-sized set of
training examples M C {1,..., N}, called a mini-batch.
Stochastic gradients computed on larger mini-batches have smaller
variance.

e The mini-batch size | M| is a hyperparameter that needs to be set.

» Too large: requires more compute; e.g., it takes more memory to
store the activations, and longer to compute each gradient update

» Too small: can’t exploit vectorization, has high variance

» A reasonable value might be | M| = 100.

Intro ML (UofT) CSC311-Lec2 44 /53

Stochastic Gradient Descent

e Batch gradient descent moves directly downhill (locally speaking).

@ SGD takes steps in a noisy direction, but moves downhill on
average.

batch gradient descent stochastic gradient descent

Intro ML (UofT) CSC311-Lec2 45 /53

SGD Learning Rate

o In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

o Typical strategy:
» Use a large learning rate early in training so you can get close to
the optimum
» Gradually decay the learning rate to reduce the fluctuations

Intro ML (UofT) CSC311-Lec2 46 / 53

When are critical points optimal?

critical
point

critical
point

local
maximum

local
minimum

critical
point

global
minimum

e Gradient descent finds a critical point, but it may be a local
optima.

e Convexity is a property that guarantees that all critical points are
global minima.

Intro ML (UofT) CSC311-Lec2

47/53

Convex Sets

N\

@ A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

X1,x2€S = Ax1+(1—-A)x2€8 for0< A< 1.

e A simple inductive argument shows that for x1,...,xy € S,
weighted averages, or convex combinations, lie within the set:

AMxX)+ -+ Avxy €S for \; >0, \i+--- Ay =1.

Intro ML (UofT) CSC311-Lec2 48 / 53

Convex Functions

@ A function f is convex if for any xg,x; in the domain of f,

F((1 = N)xo + Ax1) < (1= N)f(x0) + Af(x1)

(z)]
e Equivalently, the set of i ;
points lying above the t;fA()Tf()'T“) N R
@ . . !
graph of f is convex. ’ ’ §
o Intuitively: the function 1
is bowl-shaped. e N e
+ Azy) B
X0 (1= Nz Ea
+ Az
Intro ML (UofT) CSC311-Lec2 49 /53

Convex Functions

o We just saw that the
least-squares loss

$(y — t)? is convex as . .
a function of y (L=MLwo) | N\ L —/
+ AL(wr) : '

e For a linear model,
z=w ' x+bis a linear
function of w and b. If L((1 = Ao
the loss function is +)
convex as a function of
z, then it is convex as a
function of w and b. o W, W

,,

Intro ML (UofT) CSC311-Lec2 50 /53

L' vs. L? Regularization

@ The L! norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we’d like to encourage.

woy wo

O ©

N7 |

L2 regularization L1 regularization

Intro ML (UofT)

15 2.0 R:wa R:Z‘wl‘
2 i

— Bishop, Pattern Recognition and Machine Learning

CSC311-Lec2 51 /53

Linear Regression with L” Regularization

Which sets are convex?

an
J

p=4 p=2 p=1 p=05 p=0.1

Solution of linear regression with LP regularization:

e p = 2: Has a closed form solution.
op>1p#2:

» The objective is convex.

» The true solution can be found using gradient descent.
o p<1:

» The objective is non-convex.

» Can only find approximate solution (e.g. the best in its

neighborhood) using gradient descent.

Intro ML (UofT) CSC311-Lec2 52 /53

Conclusion

o In this lecture, we looked at linear regression, which exemplifies a
modular approach that will be used throughout this course:

» choose a model describing the relationships between variables of
interest (linear)

» define a loss function quantifying how bad the fit to the data is
(squared error)

» choose a regularizer to control the model complexity /overfitting
(L?, LP regularization)

» fit/optimize the model (gradient descent, stochastic gradient
descent, convexity)

e By mixing and matching these modular components, we can
obtain new ML methods.

o Next lecture: apply this framework to classification

Intro ML (UofT) CSC311-Lec2 53YA53]

