So far, we’ve talked about *procedures* for learning.
- KNN, decision trees, bagging

For the remainder of this course, we’ll take a more modular approach:
- choose a *model* describing the relationships between variables of interest
- define a *loss function* quantifying how bad is the fit to the data
- choose a *regularizer* saying how much we prefer different candidate explanations
- fit the model, e.g. using an *optimization algorithm*

By mixing and matching these modular components, your ML skills become combinatorially more powerful!
Problem Setup

- Want to predict a scalar t as a function of a scalar x
- Given a dataset of pairs $\{(x^{(i)}, t^{(i)})\}_{i=1}^{N}$
- The $x^{(i)}$ are called inputs, and the $t^{(i)}$ are called targets.
Problem Setup

Model: \(y \) is a linear function of \(x \):

\[
y = wx + b
\]

- \(y \) is the prediction
- \(w \) is the weight
- \(b \) is the bias
- \(w \) and \(b \) together are the parameters
- Settings of the parameters are called hypotheses
Problem Setup

- **Loss function**: squared error (says how bad the fit is)

 \[\mathcal{L}(y, t) = \frac{1}{2}(y - t)^2 \]

- \(y - t \) is the residual, and we want to make this small in magnitude

- The \(\frac{1}{2} \) factor is just to make the calculations convenient.

- **Cost function**: loss function averaged over all training examples

 \[
 J(w, b) = \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - t^{(i)} \right)^2
 \]

 \[
 = \frac{1}{2N} \sum_{i=1}^{N} \left(wx^{(i)} + b - t^{(i)} \right)^2
 \]
Problem Setup
Problem setup

- Suppose we have multiple inputs x_1, \ldots, x_D. This is referred to as **multivariable regression**.
- This is no different than the single input case, just harder to visualize.
- Linear model:
 \[y = \sum_{j} w_j x_j + b \]
Vectorization

- Computing the prediction using a for loop:

```python
y = b
for j in range(M):
    y += w[j] * x[j]
```

- For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

\[
\mathbf{w} = (w_1, \ldots, w_D)^\top \quad \mathbf{x} = (x_1, \ldots, x_D)
\]

\[
y = \mathbf{w}^\top \mathbf{x} + b
\]

- This is simpler and much faster:

```python
y = np.dot(w, x) + b
```
Vectorization

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
 - Cut down on Python interpreter overhead
 - Use highly optimized linear algebra libraries
 - Matrix multiplication is very fast on a Graphics Processing Unit (GPU)
We can take this a step further. Organize all the training examples into the **design matrix** X with one row per training example, and all the targets into the **target vector** t.

$$
X = \begin{pmatrix}
 x^{(1)\top} \\
x^{(2)\top} \\
x^{(3)\top}
\end{pmatrix}
= \begin{pmatrix}
 8 & 0 & 3 & 0 \\
 6 & -1 & 5 & 3 \\
 2 & 5 & -2 & 8
\end{pmatrix}
$$

Computing the predictions for the whole dataset:

$$
Xw + b1 = \begin{pmatrix}
 w^\top x^{(1)} + b \\
 \vdots \\
 w^\top x^{(N)} + b
\end{pmatrix}
= \begin{pmatrix}
 y^{(1)} \\
 \vdots \\
 y^{(N)}
\end{pmatrix}
= y
$$
Vectorization

- Computing the squared error cost across the whole dataset:

\[y = Xw + b1 \]

\[J = \frac{1}{2N} \| y - t \|^2 \]

- In Python:

```python
y = np.dot(X, w) + b

cost = np.sum((y - t) ** 2) / (2. * N)
```
Solving the optimization problem

- We defined a cost function. This is what we’d like to minimize.
- Recall from calculus class: minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.
- Multivariate generalization: partial derivatives must be zero.
 - Finding a minimum by analytically setting the partial derivatives to zero is called direct solution.
Direct solution

- **Partial derivatives**: derivatives of a multivariate function with respect to one of its arguments.

 \[
 \frac{\partial}{\partial x_1} f(x_1, x_2) = \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}
 \]

- To compute, take the single variable derivatives, pretending the other arguments are constant.

- Example: partial derivatives of the prediction \(y \)

 \[
 \frac{\partial y}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\sum_{j'} w_{j'} x_{j'} + b \right] \\
 = x_j
 \\
 \frac{\partial y}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{j'} w_{j'} x_{j'} + b \right] \\
 = 1
 \]
Direct solution

- **Chain rule for derivatives:**

 \[
 \frac{\partial L}{\partial w_j} = \frac{dL}{dy} \frac{\partial y}{\partial w_j}
 = \frac{d}{dy} \left[\frac{1}{2} (y - t)^2 \right] \cdot x_j
 = (y - t)x_j
 \]

 \[
 \frac{\partial L}{\partial b} = y - t
 \]

- **Cost derivatives (average over data points):**

 \[
 \frac{\partial J}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x_j^{(i)}
 \]

 \[
 \frac{\partial J}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} - t^{(i)}
 \]
The minimum must occur at a point where the partial derivatives are zero.

\[
\frac{\partial J}{\partial w_j} = 0 \quad \frac{\partial J}{\partial b} = 0.
\]

If \(\frac{\partial J}{\partial w_j} \neq 0\), you could reduce the cost by changing \(w_j\).

This turns out to give a system of linear equations, which we can solve efficiently. **Full derivation in the readings.**

Optimal weights:

\[
w = (X^\top X)^{-1} X^\top t
\]

Linear regression is one of only a handful of models in this course that permit direct solution.
Now let’s see a second way to minimize the cost function which is more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.
Gradient descent

- Observe:
 - if $\frac{\partial J}{\partial w_j} > 0$, then slightly increasing w_j increases J.
 - if $\frac{\partial J}{\partial w_j} < 0$, then slightly increasing w_j decreases J.

- The following update decreases the cost function, assuming small enough α:

 $$w_j \leftarrow w_j - \alpha \frac{\partial J}{\partial w_j}$$

 $$= w_j - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x_j^{(i)}$$

- α is a learning rate. The larger it is, the faster w changes.
- We’ll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001

Gradient descent

- This gets its name from the gradient:

\[\frac{\partial J}{\partial w} = \left(\begin{array}{c} \frac{\partial J}{\partial w_1} \\ \vdots \\ \frac{\partial J}{\partial w_D} \end{array} \right) \]

- This is the direction of fastest increase in \(J \).

- Update rule in vector form:

\[
\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial J}{\partial \mathbf{w}}
\]

\[
= \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}
\]

- Hence, gradient descent updates the weights in the direction of fastest decrease.
Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
Gradient descent

- Why gradient descent, if we can find the optimum directly?
 - GD can be applied to a much broader set of models
 - GD can be easier to implement than direct solutions, especially with automatic differentiation software
 - For regression in high-dimensional spaces, GD is more efficient than direct solution (matrix inversion is an $O(D^3)$ algorithm).
Feature mappings

- Suppose we want to model the following data

![Graph showing data points and a curve fitting]

- Pattern Recognition and Machine Learning, Christopher Bishop.

- One option: fit a low-degree polynomial; this is known as **polynomial regression**

\[y = w_3 x^3 + w_2 x^2 + w_1 x + w_0 \]

- Do we need to derive a whole new algorithm?
Feature mappings

- We get polynomial regression for free!
- Define the feature map

\[\psi(x) = \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} \]

- Polynomial regression model:

\[y = \mathbf{w}^\top \psi(x) \]

- All of the derivations and algorithms so far in this lecture remain exactly the same!
Fitting polynomials

\[y = w_0 \]

- Pattern Recognition and Machine Learning, Christopher Bishop.
Fitting polynomials

\[y = w_0 + w_1 x \]

-Pattern Recognition and Machine Learning, Christopher Bishop.
Fitting polynomials

\[y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 \]

- Pattern Recognition and Machine Learning, Christopher Bishop.
Fitting polynomials

\[y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \ldots + w_9 x^9 \]

- Pattern Recognition and Machine Learning, Christopher Bishop.
Generalization

Underfitting : model is too simple — does not fit the data.

![Graph showing underfitting](image)

Overfitting : model is too complex — fits perfectly, does not generalize.

![Graph showing overfitting](image)
Training and test error as a function of # training examples and # parameters:
The degree of the polynomial is a hyperparameter, just like k in KNN. We can tune it using a validation set.

But restricting the size of the model is a crude solution, since you’ll never be able to learn a more complex model, even if the data support it.

Another approach: keep the model large, but regularize it

Regularizer: a function that quantifies how much we prefer one hypothesis vs. another
Observation: polynomials that overfit often have large coefficients.

\[y = 0.1x^5 + 0.2x^4 + 0.75x^3 - x^2 - 2x + 2 \]
\[y = -7.2x^5 + 10.4x^4 + 24.5x^3 - 37.9x^2 - 3.6x + 12 \]

So let’s try to keep the coefficients small.
L^2 Regularization

Another reason we want weights to be small:

- Suppose inputs x_1 and x_2 are nearly identical for all training examples. The following two hypotheses make nearly the same predictions:

 $$w = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad w = \begin{pmatrix} -9 \\ 11 \end{pmatrix}$$

- But the second network might make weird predictions if the test distribution is slightly different (e.g. x_1 and x_2 match less closely).
L^2 Regularization

- We can encourage the weights to be small by choosing as our regularizer the L^2 penalty.

\[
\mathcal{R}(w) = \frac{1}{2}||w||^2 = \frac{1}{2} \sum_j w_j^2.
\]

- Note: to be pedantic, the L^2 norm is Euclidean distance, so we’re really regularizing the *squared* L^2 norm.

- The regularized cost function makes a tradeoff between fit to the data and the norm of the weights.

\[
J_{\text{reg}} = J + \lambda \mathcal{R} = J + \frac{\lambda}{2} \sum_j w_j^2
\]

- Here, λ is a hyperparameter that we can tune using a validation set.
\[L^2 \text{ Regularization} \]

- The geometric picture:

![Diagram showing geometric picture of L2 Regularization](image)
Recall the gradient descent update:

\[\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}} \]

The gradient descent update of the regularized cost has an interesting interpretation as weight decay:

\[
\mathbf{w} \leftarrow \mathbf{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}} \right) \\
= \mathbf{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \mathbf{w} \right) \\
= (1 - \alpha \lambda) \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
\]
Conclusion

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the optimization problem using one of two strategies
 - direct solution (set derivatives to zero)
 - gradient descent
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- improve the generalization by adding a regularizer
Linear Classification
Overview

- **Classification**: predicting a discrete-valued target
 - **Binary classification**: predicting a binary-valued target
- **Examples**
 - predict whether a patient has a disease, given the presence or absence of various symptoms
 - classify e-mails as spam or non-spam
 - predict whether a financial transaction is fraudulent
Overview

Binary linear classification

- **classification**: predict a discrete-valued target
- **binary**: predict a binary target \(t \in \{0, 1\} \)
 - Training examples with \(t = 1 \) are called **positive examples**, and training examples with \(t = 0 \) are called **negative examples**. Sorry.
- **linear**: model is a linear function of \(x \), followed by a threshold:

\[
z = w^T x + b
\]

\[
y = \begin{cases}
1 & \text{if } z \geq r \\
0 & \text{if } z < r
\end{cases}
\]
Some simplifications

Eliminating the threshold

- We can assume WLOG that the threshold $r = 0$:

$$w^T x + b \geq r \iff w^T x + b - r \geq 0.$$

Eliminating the bias

- Add a dummy feature x_0 which always takes the value 1. The weight w_0 is equivalent to a bias.

Simplified model

$$z = w^T x$$

$$y = \begin{cases}
1 & \text{if } z \geq 0 \\
0 & \text{if } z < 0
\end{cases}$$
Examples

\[\begin{array}{ccc}
 \text{NOT} \\
 x_0 & x_1 & t \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array} \]

\[b > 0 \]
\[b + w < 0 \]
\[b = 1, \ w = -2 \]
AND

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$b = -1.5, \; w_1 = 1, \; w_2 = 1$
The Geometric Picture

Input Space, or Data Space

- Here we’re visualizing the **NOT** example
- Training examples are points
- Hypotheses are **half-spaces** whose boundaries pass through the origin
- The boundary is the **decision boundary**
 - In 2-D, it’s a line, but think of it as a hyperplane
- If the training examples can be separated by a linear decision rule, they are **linearly separable**.
The Geometric Picture

Weight Space

- Hypotheses are points
- Training examples are half-spaces whose boundaries pass through the origin
- The region satisfying all the constraints is the **feasible region**; if this region is nonempty, the problem is **feasible**

\[w_0 > 0 \]
\[w_0 + w_1 < 0 \]
The Geometric Picture

- The **AND** example requires three dimensions, including the dummy one.
- To visualize data space and weight space for a 3-D example, we can look at a 2-D slice:

 ![Graph showing visualizations](image)

 - The visualizations are similar, except that the decision boundaries and the constraints need not pass through the origin.
The Geometric Picture

Visualizations of the **AND** example

Data Space

Slice for $x_0 = 1$

Weight Space

Slice for $w_0 = -1$

What happened to the fourth constraint?
Some datasets are not linearly separable, e.g. XOR

Proof coming in a later lecture...
Recall: binary linear classifiers. Targets $t \in \{0, 1\}$

$$z = \mathbf{w}^T \mathbf{x} + b$$

$$y = \begin{cases}
1 & \text{if } z \geq 0 \\
0 & \text{if } z < 0
\end{cases}$$

What if we can’t classify all the training examples correctly?

Seemingly obvious loss function: 0-1 loss

$$\mathcal{L}_{0-1}(y, t) = \begin{cases}
0 & \text{if } y = t \\
1 & \text{if } y \neq t
\end{cases} = \mathbb{1}_{y \neq t}.$$
As always, the cost \mathcal{J} is the average loss over training examples; for 0-1 loss, this is the error rate:

$$\mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{y(i) \neq t(i)}$$

$$\frac{1}{3} \left(\begin{array}{c}
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array}
\end{array} +
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array}
\end{array} +
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array}
\end{array} \right) = \begin{array}{c}
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array}
\end{array}$$
Attempt 1: 0-1 loss

- Problem: how to optimize?
- Chain rule:
 \[
 \frac{\partial L_{0-1}}{\partial w_j} = \frac{\partial L_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}
 \]

- But \(\frac{\partial L_{0-1}}{\partial z}\) is zero everywhere it’s defined!
 - \(\frac{\partial L_{0-1}}{\partial w_j} = 0\) means that changing the weights by a very small amount probably has no effect on the loss.
 - The gradient descent update is a no-op.
Sometimes we can replace the loss function we care about with one which is easier to optimize. This is known as a surrogate loss function.

We already know how to fit a linear regression model. Can we use this instead?

\[y = \mathbf{w}^\top \mathbf{x} + b \]

\[\mathcal{L}_{SE}(y, t) = \frac{1}{2}(y - t)^2 \]

 Doesn’t matter that the targets are actually binary.

Threshold predictions at \(y = 1/2 \).
The problem:

- The loss function hates when you make correct predictions with high confidence!
- If $t = 1$, it’s more unhappy about $y = 10$ than $y = 0$.
Attempt 3: Logistic Activation Function

- There’s obviously no reason to predict values outside $[0, 1]$. Let’s squash y into this interval.

- The **logistic function** is a kind of **sigmoidal**, or S-shaped, function:

 $$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- A linear model with a logistic nonlinearity is known as **log-linear**:

 $$z = \mathbf{w}^\top \mathbf{x} + b$$
 $$y = \sigma(z)$$
 $$L_{SE}(y, t) = \frac{1}{2}(y - t)^2.$$

- Used in this way, σ is called an **activation function**, and z is called the logit.
Attempt 3: Logistic Activation Function

The problem:
(plot of \mathcal{L}_{SE} as a function of z)

\[
\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_j}
\]

\[w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{L}}{\partial w_j}\]

- In gradient descent, a small gradient (in magnitude) implies a small step.
- If the prediction is really wrong, shouldn’t you take a large step?
- This happens because the loss function saturates.
Logistic Regression

- Because $y \in [0,1]$, we can interpret it as the estimated probability that $t = 1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- Cross-entropy loss captures this intuition:

\[
\mathcal{L}_{\text{CE}}(y, t) = \begin{cases}
- \log y & \text{if } t = 1 \\
- \log(1 - y) & \text{if } t = 0
\end{cases}
\]

\[
= -t \log y - (1 - t) \log(1 - y)
\]
Logistic Regression:

\[z = \mathbf{w}^\top \mathbf{x} + b \]

\[y = \sigma(z) = \frac{1}{1 + e^{-z}} \]

\[\mathcal{L}_{CE} = -t \log y - (1 - t) \log(1 - y) \]

[[gradient derivation in the notes]]
Logistic Regression

- Problem: what if $t = 1$ but you’re really confident it’s a negative example ($z \ll 0$)?

- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

 $$y = \sigma(z) \Rightarrow y \approx 0$$

 $$\mathcal{L}_{CE} = -t \log y - (1 - t) \log(1 - y) \Rightarrow \text{computes } \log 0$$

- Instead, we combine the activation function and the loss into a single logistic-cross-entropy function.

 $$\mathcal{L}_{LCE}(z, t) = \mathcal{L}_{CE}(\sigma(z), t) = t \log(1 + e^{-z}) + (1 - t) \log(1 + e^{z})$$

- Numerically stable computation:

 $$E = t \times \text{np.logaddexp}(0, -z) + (1-t) \times \text{np.logaddexp}(0, z)$$
Comparison of loss functions:
Logistic Regression

Comparison of gradient descent updates:

- Linear regression:

 \[w \leftarrow w - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x^{(i)} \]

- Logistic regression:

 \[w \leftarrow w - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x^{(i)} \]

- Not a coincidence! These are both examples of generalized linear models, but that’s beyond the scope of this course.