CSC 2515 Lecture 2: Decision Trees and Ensembles

Roger Grosse

University of Toronto
Overview

- **Decision Trees**
 - Simple but powerful learning algorithm
 - One of the most widely used learning algorithms in Kaggle competitions
- Lets us introduce ensembles, a key idea in ML more broadly
- Useful information theoretic concepts (entropy, mutual information, etc.)
Decision Trees

width > 6.5cm?

Yes

height > 9.5cm?

Yes

height > 6.0cm?

Yes

No

Yes

No

No

No

Yes

No

No

Yes

No

No
Decision Trees

Test example

width > 6.5cm?

Yes

height > 9.5cm?

Yes

height > 6.0cm?

Yes

Yes

No

No

No

Yes
Decision Trees

- **Decision trees** make predictions by recursively splitting on different attributes according to a tree structure.

![Decision Tree Diagram](image-url)

- The diagram illustrates a decision tree where fruits are classified based on their height and width. Points represent different fruits: red for oranges and blue for lemons. The tree splits based on conditions such as `width > 6.5cm?`, `height > 9.5cm?`, and `height > 6.0cm?` to distinguish between oranges and lemons.
Example with Discrete Inputs

What if the attributes are discrete?

<table>
<thead>
<tr>
<th>Example</th>
<th>Input Attributes</th>
<th>Goal</th>
<th>WillWait</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>x_2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>x_3</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>x_4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>x_5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>x_6</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>x_7</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>x_8</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>x_9</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>x_{10}</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>x_{11}</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>x_{12}</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. Alternate: whether there is a suitable alternative restaurant nearby.
2. Bar: whether the restaurant has a comfortable bar area to wait in.
3. Fri/Sat: true on Fridays and Saturdays.
4. Hungry: whether we are hungry.
5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
6. Price: the restaurant’s price range ($, $$, $$$).
7. Raining: whether it is raining outside.
8. Reservation: whether we made a reservation.
9. Type: the kind of restaurant (French, Italian, Thai or Burger).
10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
Decision Tree: Example with Discrete Inputs

- The tree to decide whether to wait (T) or not (F)

```
Patrons?
  /   \
 None Some Full
   /   \
  F   T

WaitEstimate?

  >60 30–60 10–30
   F   F   F

Alternate?

  No       Yes
   F       T

Hungry?

  0–10
   T

     Yes
   No

Reservation?

  No
   F

Fri/Sat?

  Yes
   T

Alternate?

  No
   F

Bar?

  No
   F

Raining?

  No
   F

T

T

T

T

T

T

T
```

UofT

CSC 2515: 02-Decision Trees and Ensembles
Internal nodes test attributes

Branching is determined by attribute value

Leaf nodes are outputs (predictions)
Each path from root to a leaf defines a region R_m of input space.

Let $\{(x^{(m_1)}, t^{(m_1)}), \ldots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m.

Classification tree:
- discrete output
- leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Regression tree:
- continuous output
- leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Note: We will focus on classification.

[Slide credit: S. Russell]
Expressiveness

- **Discrete-input, discrete-output case:**
 - Decision trees can express any function of the input attributes
 - E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- **Continuous-input, continuous-output case:**
 - Can approximate any function arbitrarily closely
 - Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won’t generalize to new examples

[Slide credit: S. Russell]
How do we Learn a Decision Tree?

- How do we construct a useful decision tree?
Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you are interested, check: Hyafil & Rivest’76]

- Resort to a greedy heuristic:
 - Start from an empty decision tree
 - Split on the “best” attribute
 - Recurse

- Which attribute is the “best”?
 - Choose based on accuracy?
Choosing a Good Split

- Why isn’t accuracy a good measure?

![Decision Tree Diagram]

- Is this split good? Zero accuracy gain.
- Instead, we will use techniques from information theory

Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty
Choosing a Good Split

Which attribute is better to split on, X_1 or X_2?

- Deterministic: good (all are true or false; just one class in the leaf)
- Uniform distribution: bad (all classes in leaf equally probable)
- What about distributions in between?

Note: Let’s take a slight detour and remember concepts from information theory

[Slide credit: D. Sontag]
We Flip Two Different Coins

Sequence 1:
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?

Sequence 2:
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?
Entropy is a measure of expected “surprise”:

$$H(X) = - \sum_{x \in X} p(x) \log_2 p(x)$$

- \(\frac{8}{9} \log_2 \frac{8}{9} \) \(-\frac{1}{9} \log_2 \frac{1}{9} \approx \frac{1}{2} \)
- \(\frac{4}{9} \log_2 \frac{4}{9} \) \(-\frac{5}{9} \log_2 \frac{5}{9} \approx 0.99 \)

- Measures the information content of each observation
- Unit = bits
- A fair coin flip has 1 bit of entropy
Quantifying Uncertainty

\[H(X) = - \sum_{x \in X} p(x) \log_2 p(x) \]

- **“High Entropy”**:
 - Variable has a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable

- **“Low Entropy”**
 - Distribution of variable has many peaks and valleys
 - Histogram has many lows and highs
 - Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
Entropy of a Joint Distribution

- Example: \(X = \{\text{Raining, Not raining}\}, \ Y = \{\text{Cloudy, Not cloudy}\} \)

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

\[
H(X, Y) = - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(x, y)
\]

\[
= - \frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}
\]

\[
\approx 1.56 \text{bits}
\]
Specific Conditional Entropy

- Example: \(X = \{ \text{Raining, Not raining} \} \), \(Y = \{ \text{Cloudy, Not cloudy} \} \)

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

- What is the entropy of cloudiness \(Y \), given that it is raining?

\[
H(Y|X = x) = - \sum_{y \in Y} p(y|x) \log_2 p(y|x)
\]

\[
= - \frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}
\]

\[
\approx 0.24 \text{bits}
\]

- We used: \(p(y|x) = \frac{p(x,y)}{p(x)} \), and \(p(x) = \sum_y p(x,y) \) (sum in a row)
Conditional Entropy

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

The expected conditional entropy:

\[
H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x) \\
= -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(y|x)
\]
Conditional Entropy

- Example: \(X = \{ \text{Raining, Not raining} \} \), \(Y = \{ \text{Cloudy, Not cloudy} \} \)

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

- What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

\[
H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x) \\
= \frac{1}{4} H(\text{cloudy}|\text{is raining}) + \frac{3}{4} H(\text{cloudy}|\text{not raining}) \\
\approx 0.75 \text{ bits}
\]
Some useful properties:

- H is always non-negative
- Chain rule: $H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)$
- If X and Y independent, then X doesn’t tell us anything about Y: $H(Y|X) = H(Y)$
- But Y tells us everything about Y: $H(Y|Y) = 0$
- By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \leq H(Y)$
Information Gain

<table>
<thead>
<tr>
<th></th>
<th>Cloudy</th>
<th>Not Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raining</td>
<td>24/100</td>
<td>1/100</td>
</tr>
<tr>
<td>Not Raining</td>
<td>25/100</td>
<td>50/100</td>
</tr>
</tbody>
</table>

- How much information about cloudiness do we get by discovering whether it is raining?

 \[IG(Y|X) = H(Y) - H(Y|X) \]

 \[\approx 0.25 \text{ bits} \]

- This is called the information gain in \(Y \) due to \(X \), or the mutual information of \(Y \) and \(X \).

 - If \(X \) is completely uninformative about \(Y \): \(IG(Y|X) = 0 \)

 - If \(X \) is completely informative about \(Y \): \(IG(Y|X) = H(Y) \)
Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!
- What is the information gain of this split?

Root entropy: $H(Y) = -\frac{49}{149} \log_2\left(\frac{49}{149}\right) - \frac{100}{149} \log_2\left(\frac{100}{149}\right) \approx 0.91$

Leafs entropy: $H(Y|\text{left}) = 0$, $H(Y|\text{right}) \approx 1$.

$I G(split) \approx 0.91 - \left(\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1\right) \approx 0.24 > 0$
Constructing Decision Trees

- At each level, one must choose:
 1. Which variable to split.
 2. Possibly where to split it.

- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)
Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node

1. pick an attribute to split at a non-terminal node
2. split examples into groups based on attribute value
3. for each group:
 - if no examples – return majority from parent
 - else if all examples in same class – return class
 - else loop to step 1
Back to Our Example

Attributes:
1. **Alternate**: whether there is a suitable alternative restaurant nearby.
2. **Bar**: whether the restaurant has a comfortable bar area to wait in.
3. **Fri/Sat**: true on Fridays and Saturdays.
4. **Hungry**: whether we are hungry.
5. **Patrons**: how many people are in the restaurant (values are None, Some, and Full).
6. **Price**: the restaurant's price range ($, $$, $$$).
7. **Raining**: whether it is raining outside.
8. **Reservation**: whether we made a reservation.
9. **Type**: the kind of restaurant (French, Italian, Thai or Burger).
10. **WaitEstimate**: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Input Attributes

<table>
<thead>
<tr>
<th>Example (x)</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>0–10</td>
</tr>
<tr>
<td>x₂</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>30–60</td>
</tr>
<tr>
<td>x₃</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
</tr>
<tr>
<td>x₄</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>Yes</td>
<td>Thai</td>
<td>10–30</td>
</tr>
<tr>
<td>x₅</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>>60</td>
</tr>
<tr>
<td>x₆</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$</td>
<td>Yes</td>
<td>Yes</td>
<td>Italian</td>
<td>0–10</td>
</tr>
<tr>
<td>x₇</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
</tr>
<tr>
<td>x₈</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$</td>
<td>Yes</td>
<td>Yes</td>
<td>Thai</td>
<td>0–10</td>
</tr>
<tr>
<td>x₉</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>>60</td>
</tr>
<tr>
<td>x₁₀</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$$$$</td>
<td>No</td>
<td>Yes</td>
<td>Italian</td>
<td>10–30</td>
</tr>
<tr>
<td>x₁₁</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>0–10</td>
</tr>
<tr>
<td>x₁₂</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>30–60</td>
</tr>
</tbody>
</table>

Goal
- WillWait
 - \(y₁ = \text{Yes} \)
 - \(y₂ = \text{No} \)
 - \(y₃ = \text{Yes} \)
 - \(y₄ = \text{Yes} \)
 - \(y₅ = \text{No} \)
 - \(y₆ = \text{Yes} \)
 - \(y₇ = \text{No} \)
 - \(y₈ = \text{Yes} \)
 - \(y₉ = \text{No} \)
 - \(y₁₀ = \text{No} \)
 - \(y₁₁ = \text{No} \)
 - \(y₁₂ = \text{Yes} \)

[from: Russell & Norvig]
Attribute Selection

\[
IG(Y) = H(Y) - H(Y|X)
\]

\[
IG(type) = 1 - \left[\frac{2}{12} H(Y|Fr.) + \frac{2}{12} H(Y|It.) + \frac{4}{12} H(Y|Thai) + \frac{4}{12} H(Y|Bur.) \right] = 0
\]

\[
IG(Patrons) = 1 - \left[\frac{2}{12} H(0, 1) + \frac{4}{12} H(1, 0) + \frac{6}{12} H(\frac{2}{6}, \frac{4}{6}) \right] \approx 0.541
\]
Which Tree is Better?

```
Patrons?
<table>
<thead>
<tr>
<th>None</th>
<th>Some</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Wait Estimate?
  | >60   | 30-60 | 10-30 |
  | No    | Yes   |      |

Alternate?
  | No    | Yes   |      |
  | Yes   |      |      |

Reservation? | Fri/Sat?
  | No    | Yes   | No    | Yes   |
  | Yes   |      | Yes   |      |

Bar?
  | No    | Yes   | No    | Yes   |
  | Yes   |      | Yes   |      |

Hungry?
  | No    | Yes   |      |
  | Yes   |      |      |

Type?
  | French | Italian | Thai |
  | Yes    | No      |      |

Fri/Sat?
  | No    | Yes   |      |
  | Yes   |      |      |

Burger
  | Yes   |      |      |

```
What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- “Occam’s Razor”: find the simplest hypothesis that fits the observations
 - Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, “The role of Occam’s razor in knowledge discovery”
- We desire small trees with informative nodes near the root
Decision Tree Miscellany

- **Problems:**
 - You have exponentially less data at lower levels
 - Too big of a tree can overfit the data
 - Greedy algorithms don’t necessarily yield the global optimum

- **Handling continuous attributes**
 - Split based on a threshold, chosen to maximize information gain

- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.
Comparison to k-NN

Advantages of decision trees over KNN

- Good when there are lots of attributes, but only a few are important
- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs
- Fast at test time
- More interpretable

Advantages of KNN over decision trees

- Few hyperparameters
- Able to handle attributes/features that interact in complex ways (e.g. pixels)
- Can incorporate interesting distance measures (e.g. shape contexts)
- Typically make better predictions in practice
 - As we’ll see next lecture, ensembles of decision trees are much stronger. But they lose many of the advantages listed above.
Ensembles and Bagging
An ensemble of predictors is a set of predictors whose individual decisions are combined in some way to classify new examples

- E.g., (possibly weighted) majority vote

For this to be nontrivial, the classifiers must differ somehow, e.g.

- Different algorithm
- Different choice of hyperparameters
- Trained on different data
- Trained with different weighting of the training examples

Ensembles are usually trivial to implement. The hard part is deciding what kind of ensemble you want, based on your goals.
Ensemble methods: Overview

- This lecture: **bagging**
 - Train classifiers independently on random subsets of the training data.

- Later lecture: **boosting**
 - Train classifiers sequentially, each time focusing on training examples that the previous ones got wrong.

Bagging and boosting serve very different purposes. To understand this, we need to take a detour to understand the bias and variance of a learning algorithm.
Bias and Variance

Low Bias

Low Variance

High Variance

High Bias
Loss Functions

- A loss function $L(y, t)$ defines how bad it is if the algorithm predicts y, but the target is actually t.

- Example: **0-1 loss** for classification

 $$L_{0-1}(y, t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases}$$

 - Averaging the 0-1 loss over the training set gives the **training error rate**, and averaging over the test set gives the **test error rate**.

- Example: **squared error loss** for regression

 $$L_{SE}(y, t) = \frac{1}{2}(y - t)^2$$

 - The average squared error loss is called **mean squared error (MSE)**.
Bias-Variance Decomposition

- Recall that overly simple models underfit the data, and overly complex models overfit.

- We can quantify this effect in terms of the bias/variance decomposition.
 - Bias and variance of what?
Bias-Variance Decomposition: Basic Setup

- Suppose the training set \mathcal{D} consists of pairs (x_i, t_i) sampled independent and identically distributed (i.i.d.) from a single data generating distribution p_{data}.
- Pick a fixed query point x (denoted with a green x).
- Consider an experiment where we sample lots of training sets independently from p_{data}.

![Diagram showing the bias-variance tradeoff with different training sets and a fixed query point](image-url)
Let’s run our learning algorithm on each training set, and compute its prediction y at the query point x.

We can view y as a random variable, where the randomness comes from the choice of training set.

The classification accuracy is determined by the distribution of y.

![Graphs showing classification accuracy](image)
Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y is a random variable, we can talk about its expectation, variance, etc.
Recap of basic setup:

- Notice: \(y \) is independent of \(t \). (Why?)
- This gives a distribution over the loss at \(x \), with expectation \(\mathbb{E}[L(y, t) \mid x] \).
- For each query point \(x \), the expected loss is different. We are interested in minimizing the expectation of this with respect to \(x \sim p_{\text{data}} \).
Bayes Optimality

- For now, focus on squared error loss, \(L(y, t) = \frac{1}{2}(y - t)^2 \).
- A first step: suppose we knew the conditional distribution \(p(t \mid x) \). What value \(y \) should we predict?
 - Here, we are treating \(t \) as a random variable and choosing \(y \).
- **Claim:** \(y^* = \mathbb{E}[t \mid x] \) is the best possible prediction.
- **Proof:**

\[
\mathbb{E}[(y - t)^2 \mid x] = \mathbb{E}[y^2 - 2yt + t^2 \mid x] \\
= y^2 - 2y\mathbb{E}[t \mid x] + \mathbb{E}[t^2 \mid x] \\
= y^2 - 2y\mathbb{E}[t \mid x] + \mathbb{E}[t \mid x]^2 + \text{Var}[t \mid x] \\
= y^2 - 2yy^* + y^*_2 + \text{Var}[t \mid x] \\
= (y - y^*_2 + \text{Var}[t \mid x]}
\]
Bayes Optimality

\[\mathbb{E}[(y - t)^2 | x] = (y - y_*)^2 + \text{Var}[t | x] \]

- The first term is nonnegative, and can be made 0 by setting \(y = y_* \).
- The second term corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error.
 - This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.
 - Notice that this term doesn’t depend on \(y \).
- This process of choosing a single value \(y_* \) based on \(p(t | x) \) is an example of decision theory.
Now return to treating y as a random variable (where the randomness comes from the choice of dataset).

We can decompose out the expected loss (suppressing the conditioning on x for clarity):

$$
\mathbb{E}[(y - t)^2] = \mathbb{E}[(y - y^*)^2] + \text{Var}(t)
$$

$$
= \mathbb{E}[y^2 - 2y^*y + y^2] + \text{Var}(t)
$$

$$
= y^2 - 2y^*\mathbb{E}[y] + \mathbb{E}[y^2] + \text{Var}(t)
$$

$$
= y^2 - 2y^*\mathbb{E}[y] + \mathbb{E}[y]^2 + \text{Var}(y) + \text{Var}(t)
$$

$$
= (y^* - \mathbb{E}[y])^2 + \text{Var}(y) + \text{Var}(t)
$$

- **bias**
- **variance**
- **Bayes error**
Bayes Optimality

\[\mathbb{E}[(y - t)^2] = (y^* - \mathbb{E}[y])^2 + \text{Var}(y) + \text{Var}(t) \]

- We just split the expected loss into three terms:
 - **bias**: how wrong the expected prediction is (corresponds to underfitting)
 - **variance**: the amount of variability in the predictions (corresponds to overfitting)
 - **Bayes error**: the inherent unpredictability of the targets

- Even though this analysis only applies to squared error, we often loosely use “bias” and “variance” as synonyms for “underfitting” and “overfitting”.

We can visualize this decomposition in output space, where the axes correspond to predictions on the test examples.

If we have an overly simple model (e.g. KNN with large k), it might have

- high bias (because it’s too simplistic to capture the structure in the data)
- low variance (because there’s enough data to get a stable estimate of the decision boundary)
If you have an overly complex model (e.g. KNN with $k = 1$), it might have

- low bias (since it learns all the relevant structure)
- high variance (it fits the quirks of the data you happened to sample)
Now, back to bagging!
Suppose we could somehow sample m independent training sets from ρ_{data}.

We could then compute the prediction y_i based on each one, and take the average $y = \frac{1}{m} \sum_{i=1}^{m} y_i$.

How does this affect the three terms of the expected loss?

- **Bayes error:** unchanged, since we have no control over it
- **Bias:** unchanged, since the averaged prediction has the same expectation

\[
\mathbb{E}[y] = \mathbb{E} \left[\frac{1}{m} \sum_{i=1}^{m} y_i \right] = \mathbb{E}[y_i]
\]

- **Variance:** reduced, since we’re averaging over independent samples

\[
\text{Var}[y] = \text{Var} \left[\frac{1}{m} \sum_{i=1}^{m} y_i \right] = \frac{1}{m^2} \sum_{i=1}^{m} \text{Var}[y_i] = \frac{1}{m} \text{Var}[y_i].
\]
Bagging: The Idea

- In practice, running an algorithm separately on independently sampled datasets is very wasteful!
- Solution: bootstrap aggregation, or bagging.
 - Take a single dataset \mathcal{D} with n examples.
 - Generate m new datasets, each by sampling n training examples from \mathcal{D}, with replacement.
 - Average the predictions of models trained on each of these datasets.
- The bootstrap is one of the most important ideas in all of statistics!
Problem: the datasets are not independent, so we don’t get the $1/m$ variance reduction.

- Possible to show that if the sampled predictions have variance σ^2 and correlation ρ, then

$$\text{Var} \left(\frac{1}{m} \sum_{i=1}^{m} y_i \right) = \frac{1}{m} (1 - \rho) \sigma^2 + \rho \sigma^2.$$

Ironically, it can be advantageous to introduce additional variability into your algorithm, as long as it reduces the correlation between samples.

- Intuition: you want to invest in a diversified portfolio, not just one stock.
- Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.
Random forests = bagged decision trees, with one extra trick to decorrelate the predictions

When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features

Random forests are probably the best black-box machine learning algorithm — they often work well with no tuning whatsoever.
- one of the most widely used algorithms in Kaggle competitions
Summary

- Bagging reduces overfitting by averaging predictions.
- Used in most competition winners
 - Even if a single model is great, a small ensemble usually helps.
- Limitations:
 - Does not reduce bias.
 - There is still correlation between classifiers.
- Random forest solution: Add more randomness.