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Bag-Of-Warps
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KTH Actions dataset

Hand waving Hand clapping

Walking Jogging Running
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@ Collapsing all hidden representations at monocular SIFT
keypoints (across all keypoints and time frames) and performing
logistic regression yields 80.56% correct.
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Convolutional GBM

@ Convolutional GBM (Taylor et al., 2010):

Prior Art Accuracy ||Convolutional architectures Accuracy
HOG3D-KM-SVM 85.3[[32convGRBM @0 128F 207 -R /N /P - log reg 88.9
HOG/HOF-KM-SVM 86.1|32convGRBM 10 128F T2 R /N/PES_mip 90.0
HOG-KM-SVM 79.0([32F cag o -R/N/P TR 128F fay -R/N /P log reg 79.4
HOF-KM-SVM 88.0|[32F (25 ¥2-R/N/PY¥128F 200 -R/N/P 4 mlp 79.5

@ Convolutional GBM on Hollywood2:

Method AP
Prior Art [27]:

HOG3D+KM+SVM 45.3
HOG/HOF+KM+SVM 47.4
HOG+EKM+SVM 39.4
HOF+KM+SVM 45.5
convGRBM+S5SC+SVM 46.6
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Stacked convolutional ISA

@ (Le, etal., 2011)
@ Velocity tuning of the higher-order features:

normalized response

B ®
T
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ISA applied to action recognition
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@ (Le, etal, 2011)
KTH Hollywood2 UCF YouTube
until 2011 92.1 50.9 85.6 71.2
hierarchical ISA 93.9 53.3 86.5 75.8
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Analogy making

A: A = B:7?

Analogy making

@ Infer transformation from source images Tsource, Ysource:

z (Ccsourcea ysource)

© Apply the transformation to targetimage T iareet

’y(Z, mtarget)
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Analogy making
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Filters learned from transforming faces

@ Filters learned from faces:

J& .
i
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Metric learning and analogy making

9'5 PeEPre= |8 cedEFE
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@ Learning a gated Boltzmann machine on changing facial
expressions.

@ (Susskind, et al., 2011)

@ Joint density training allows for comparing compatibilities of
pairs.

Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 138/174



TFD Same ID TFD Same Exp

F-ro—T-r-ma- T

Model/Task | TFD | TFD | PUBFIG AFFINE
ID Exp | ID

cosine 0.848 | 0.663 | 0.649 | 0.721
RBM 0.869 | 0.656 | 0.647 | 0.799
conditional 0.805 | 0.634 | 0.557 | 0.825
bilinear 0.905 | 0.637 | 0.774 | 0.812
3-way 0.932 | 0.705 | 0.771 | 0.930

3-way symm | 0.951 | 0.695 | 0.762 | 0.931

[m] = = =
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Bi-linear classification
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@ Special case of a gated Boltzmann machine:
@ Replace the output-“‘image” by a one-hot-encoded class-label.
@ This is a classifier, where each label can blend in it's own model!
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Bi-linear classification
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@ Marginalization is tractable in closed form

p(ylz) = Zp y,zle) o Y exp(@iwyz) =Y exp(> | wyirtihi)
z z ik
= H(l—i—exp(Zwyikxi))

k

@ ltis also equivalent to a mixture of 2X logistic regressors (Nair,
2008), (Memisevic, et al.; 2010), (Warrell et al.; 2010)
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Bi-linear classification
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@ We can factorize parameters like before.

@ This allows classes to share features.

@ The activity of a factor, f, given class j, is now exactly equal to the
parameter value wgf.

@ Thus the weights can be thought of as the responses of virtual
class-templates.
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Rotated digit classification E ﬂ

S|

@ Data-set from the “deep learning-challenge” [Larochelle et al.,

2007] like before.
@ Learned rotation-invariant filters:
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Bi-linear classification

@ Deep Learning challenge (Larochelle et al., 2008).

SVMs NNet RBM DEEP GSM
dataset/model: SVMRBF SVMPOL NNet DBN1 DBN3 SAA3 GSM (unfact)
rectangles 2.15 2.15 7.16 4.71 2.60 2.41 0.83 (0.56)
rect.-images 24.04 24.05 33.20 23.69 22.50 24.05 22.51 (23.17)
mnistplain 3.03 3.69 4.69 3.94 3.11 3.46 3.70 (3.98)
convexshapes 19.13 19.82 32.25 19.92 18.63 18.41 17.08 (21.03)
mnistbackrand 14.58 16.62 20.04 9.80 6.73 11.28 10.48 (11.89)
mnistbackimg 22.61 24.01 27.41 16.15 16.31 23.00 23.65 (22.07)
mnistrotbackimg 55.18 56.41 62.16 52.21 47.39 51.93 55.82 (55.16)
mnistrot 11.11 15.42 18.11 14.69 10.30 10.30 11.75 (16.15)
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Extension to /ess than two frames

© O —O 8
8/ © O\o

@ To train energy models on single images:

@ Plug in the same image left and right.

@ Hiddens will model pixel covariance matrices.

@ Eg., (Ranzato et al., 2010), (Karklin, Lewicki; 2008)
@ Training can be finicky.
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Extension to /ess than two frames

© O —O 8
8/ © O\o

@ To train energy models on single images:

@ Plug in the same image left and right.

@ Hiddens will model pixel covariance matrices.

@ Eg., (Ranzato et al., 2010), (Karklin, Lewicki; 2008)

o Training-eanbe-finicky- Use a relational auto-encoder.
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Extension to /ess than two frames

© O —O 8
8/ © O\o

@ We can combine this with standard hidden units in one model.

@ The combination tends to work better recognition (Ranzato et al.,
2010).

@ The vanilla hidden units then plays the role of
“higher-order-biases” (Memisevic, 2007).
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Extension to /ess than two frames

© O —O 8
8/ © O\o

@ Learning higher-order within-image structure has been suggested
to address the fact that ICA does not really yield independent
components...

@ Add layers to model correlations of filter responses.
@ Closely related to Deep Learning.
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Some within image covariance and mean filters
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Within-image correlations

@ (Karklin, Lewicki; 2008), (Osindero et al., 2006), ...

@ ISA itself used mainly for modeling within-image structure.

@ (Ranzato et al., 2010) suggest combining covariance features and
traditional “mean” features, for example to generate images with

an MRF:
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mcRBMs on TIMIT

@ mcRBM applied to speech recognition (phones, speaker
independent, TIMIT)

@ (Dahl, et al.; 2010)

Method

PER
Stochastic Segmental Models [17] 36%
Conditional Random Field [18] 34.8%
Large-Margin GMM [19] 33%
CD-HMM [20] 27.3%
Augmented conditional Random Fields [20] 26.6%
Recurrent Neural Nets [21] 26.1%
h Bayesian Triphone HMM [22] 25.6%
Monophone HTMs [23] 24.8%
Heterogeneous Classifiers [24] 24.4%
Deep Belief Networks(DBNs) [3] 23.0%%
Triphone HMMs discriminatively trained w/ BMMI [7] 22.7%
Deep Belief Networks with mcRBM feature extraction (this work) | 21.7%%
Deep Belief Networks with mcRBM feature extraction (this work) | 20.5%
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Transparent motion

probability

180 240 300 0 60 120
angle

@ Hidden variables make extracting multiple, simultaneous motions
easy.

@ When they fail they do so in a similar way as humans:

@ Better disrimination at large angles, averaging at very small
angles, “motion repulsion”.

@ (eg., Treue et al., 2000)
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Depth as a latent variable

@ Learning a dictionary for stereo:
@ Generate left-right camera pairs with known disparities.
@ Predict disparity from the hidden units.

@ This gives rise to a three-layer network, that may be trained with
Hebbian-like learning.

'f B 1” IS \ |
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B
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rectified

not rectified
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Hiddens learn to encode disparities

left image right image predicted disparity
e -

@ Can use this to encode 3d-structure implicitly, for example, for
multi-view recognition.
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Norb stereo features

NORB training subset: NORB testset:
RBMmon RBMbin cc cc+bin || RBMbin cc cc+bin
73.65 60.43 34.85 31.48 63.28 38.91 36.80
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“Harnessing the aperture problem”

@ Transformations are transformation invariant.

@ The 2-D subspace projections, however, are at the same time
affected by the aperture problem, so they are selective to other
sources of variability, including object ID!

@ We can use the aperture effect to build invariant features:
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Harnessing the aperture problem

Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 156 /174



Harnessing the aperture problem

Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 156 /174



Harnessing the aperture problem

Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 156 /174



Harnessing the aperture problem
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Harnessing the aperture problem

pose-independent, content-independent
—

\ pose-independent, content-dependent

—
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Rotation “quadrature” filters
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Rotation “quadrature” filters
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Representing digits using rotation aperture

features

aperture feature similarities image similarities

0 1 2000

e L —O

@ Learn rotation features. Represent digits using aperture features.

@ No video available? Fill video buffer with copies of the same
image: Represent the non-transformation.
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Rotated MNIST error rates
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Video object features

@ Humans do not recognize still images but videos of objects.

@ The way in which an object changes can convey useful
information about the object, including 3-D structure.

@ — Learn features from videos not still images. For example,
(Lee and Soatto, 2011).
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The “norbjects” video dataset
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3-D rotation subspaces
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3-D rotation subspaces
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3-D rotation subspaces
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3-D rotation subspaces
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3-D rotation subspaces
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3-D rotation subspaces

Roland Memisevic (Uni Frankfurt)

Multiview Feature Learning

Tutorial at CVPR 2012

168 /174



“Harnessing the aperture problem”

+—+ ASC Features +—+ ASC Features

207 Aperture Features 207 Aperture Features
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OO0.0 w Hidden layer
tyle

@ (Taylor, Hinton; 2009), (Taylor,
et al.; 2010)

@ Learning models on mocap
instead of images makes it
possible to model motion style
and to perform tracking.

Input layer Output layer
(e:g. dataat time t-1:-N)  (e.g. data at time )

Training | Test [[  Bascline MoCorr [28] | GPLVM [13] [ CMFA-VB [13] | CRBM imCRBM-10
S1+52+83 | SI 140.35 - - 55435079 | 54.2720.49
si g1 || 120181947 48754372 | 58.62+3.87

S1+82+83 | 82 149.37 09.13£22.98 | 69.2843.30

S2 S2 162.75+15.36 - 88.35+£25.66 68.67+24.66 47.43+2.86 | 67.02+0.70
S1+82+83 | 83 180.11424.02 156.30 - - 70.894+£2.10 | 43.40+4.12
S3 S3 ) i - 87.39+£21.69 69.594+22.22 49.81+2.19 | 51.43+0.92
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More Tracking

Cm Object class
COOQQ) h?, Second hidden layer

States

First hidden layers

‘Gaze observation

Belief state

Reward

Policy T

Actions

Video frames

@ (Bazzani et al.), (Larochelle, Hinton, 2011)
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Conclusions

@ Learningis a way to support simplicity and homogeneity of
complex, intelligent systems.

@ Feature learning even more so.
@ Relational feature learning even more:

@ Learning “verbs”, not just “nouns”, can help address more tasks
with a single kind of model.

@ This seems like a very good reason to have complex cells.

@ One reason, why looking for correspondences — across frames,
across views, across modalities, etc. — is a common operation, is
that mappings between modalities are often one-to-many.

@ The theory provides a strong inductive bias for products and/or
squaring non-linearities when building deep learning models.
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Thank you

@ More info, code, links, etc. at

http://www.cs.toronto.edu/~rfm/
multiview-feature-learning-cvpr/index.html
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