Outline

- Introduction
 - Feature Learning
 - Correspondence in Computer Vision
 - Relational feature learning
- Learning relational features
 - Sparse Coding Review
 - Encoding relations
 - Inference
 - Learning
- Factorization, eigen-spaces and complex cells
 - Factorization
 - Eigen-spaces, energy models, complex cells
- 4 Applications
 - Applications
 - Conclusions

Outline

- Introduction
 - Feature Learning
 - Correspondence in Computer Vision
 - Relational feature learning
- Learning relational features
 - Sparse Coding Review
 - Encoding relations
 - Inference
 - Learning
- Factorization, eigen-spaces and complex cells
 - Factorization
 - Eigen-spaces, energy models, complex cells
- 4 Applications
 - Applications
 - Conclusions

Bag-Of-Warps

Bag-Of-Warps

KTH Actions dataset

 \bullet Collapsing all hidden representations at monocular SIFT keypoints (across all keypoints and time frames) and performing logistic regression yields 80.56% correct.

Convolutional GBM

Convolutional GBM (Taylor et al., 2010):

Prior Art	Accuracy	Convolutional architectures	Accuracy
HOG3D-KM-SVM	85.3	32convGRBM ^{16×16} -128F ^{9×9×9} _{CSG} -R/N/P ^{4×4×4} _A -log_reg	88.9
HOG/HOF-KM-SVM	86.1	$32 \text{convGRBM}^{16 \times 16} - 128 F_{\text{CSG}}^{9 \times 3 \times 9} - R/N/P_A^{4 \times 4 \times 4} - \text{mlp}$	90.0
HOG-KM-SVM	79.0	$[32F_{CSC}^{16X16X2}-R/N/P_{A}^{4X4X4}-128F_{CSC}^{9X9X9}-R/N/P_{A}^{4X4X4}-log_{reg}]$	79.4
HOF-KM-SVM	88.0	$32F_{CSG}^{16\times16\times2}$ -R/N/P $_A^{4\times4\times4}$ -128F $_{CSG}^{9\times9}$ -R/N/P $_A^{4\times4\times4}$ -mlp	79.5

Convolutional GBM on Hollywood2:

Method	AP
Prior Art [27]:	
HOG3D+KM+SVM	45.3
HOG/HOF+KM+SVM	47.4
HOG+KM+SVM	39.4
HOF+KM+SVM	45.5
convGRBM+SC+SVM	46.6

Stacked convolutional ISA

- (Le, et al., 2011)
- Velocity tuning of the higher-order features:

ISA applied to action recognition

• (Le, et al., 2011)

	KTH	Hollywood2	UCF	YouTube
until 2011	92.1	50.9	85.6	71.2
hierarchical ISA	93.9	53.3	86.5	75.8

Analogy making

Analogy making

lacktriangle Infer transformation from source images $x_{
m source}, y_{
m source}$:

$$\boldsymbol{z}(\boldsymbol{x_{\mathrm{source}}}, \boldsymbol{y_{\mathrm{source}}})$$

② Apply the transformation to *target* image x_{target} :

$$y(z, x_{ ext{target}})$$

Analogy making

Filters learned from transforming faces

Filters learned from faces:

Metric learning and analogy making

- Learning a gated Boltzmann machine on changing facial expressions.
- (Susskind, et al., 2011)
- Joint density training allows for comparing compatibilities of pairs.

Model/Task	TFD	TFD	PUBFIC	AFFINE
	ID	Exp	ID	
cosine	0.848	0.663	0.649	0.721
RBM	0.869	0.656	0.647	0.799
conditional	0.805	0.634	0.557	0.825
bilinear	0.905	0.637	0.774	0.812
3-way	0.932	0.705	0.771	0.930
3-way symm	0.951	0.695	0.762	0.931

- Special case of a gated Boltzmann machine:
- Replace the output-"image" by a one-hot-encoded class-label.
- This is a classifier, where each *label can blend in it's own model*!

Marginalization is tractable in closed form

$$p(y|\mathbf{x}) = \sum_{\mathbf{z}} p(y, \mathbf{z}|\mathbf{x}) \propto \sum_{\mathbf{z}} \exp(\mathbf{x}^{t} w_{y} \mathbf{z}) = \sum_{\mathbf{z}} \exp(\sum_{ik} w_{yik} x_{i} h_{k})$$
$$= \prod_{k} (1 + \exp(\sum_{i} w_{yik} x_{i}))$$

• It is also equivalent to a mixture of 2^K logistic regressors (Nair, 2008), (Memisevic, et al.; 2010), (Warrell et al.; 2010)

- We can factorize parameters like before.
- This allows classes to share features.
- The activity of a factor, f, given class j, is now exactly equal to the parameter value w_{if}^{y} .
- Thus the weights can be thought of as the responses of virtual class-templates.

Rotated digit classification 0 💆 🗸 🦻

- Data-set from the "deep learning-challenge" [Larochelle et al., 2007] like before.
- Learned rotation-invariant filters:

• Deep Learning challenge (Larochelle et al., 2008).

	SV	Ms	NNet	RBM	DE	EP	G	SM
dataset/model:	SVMRBF	SVMPOL	NNet	DBN1	DBN3	SAA3	GSM	(unfact)
rectangles	2.15	2.15	7.16	4.71	2.60	2.41	0.83	(0.56)
rectimages	24.04	24.05	33.20	23.69	22.50	24.05	22.51	(23.17)
mnistplain	3.03	3.69	4.69	3.94	3.11	3.46	3.70	(3.98)
convexshapes	19.13	19.82	32.25	19.92	18.63	18.41	17.08	(21.03)
mnistbackrand	14.58	16.62	20.04	9.80	6.73	11.28	10.48	(11.89)
mnistbackimg	22.61	24.01	27.41	16.15	16.31	23.00	23.65	(22.07)
mnistrotbackimg	55.18	56.41	62.16	52.21	47.39	51.93	55.82	(55.16)
mnistrot	11.11	15.42	18.11	14.69	10.30	10.30	11.75	(16.15)

- To train energy models on single images:
- Plug in the same image left and right.
- Hiddens will model pixel covariance matrices.
- Eg., (Ranzato et al., 2010), (Karklin, Lewicki; 2008)
- Training can be finicky.

- To train energy models on single images:
- Plug in the same image left and right.
- Hiddens will model pixel covariance matrices.
- Eg., (Ranzato et al., 2010), (Karklin, Lewicki; 2008)
- Training can be finicky. Use a relational auto-encoder.

- We can combine this with standard hidden units in one model.
- The combination tends to work better recognition (Ranzato et al., 2010).
- The vanilla hidden units then plays the role of "higher-order-biases" (Memisevic, 2007).

- Learning higher-order within-image structure has been suggested to address the fact that ICA does not really yield independent components...
- Add layers to model correlations of filter responses.
- Closely related to Deep Learning.

Some within image covariance and mean filters

Within-image correlations

- (Karklin, Lewicki; 2008), (Osindero et al., 2006), ...
- ISA itself used mainly for modeling within-image structure.
- (Ranzato et al., 2010) suggest combining covariance features and traditional "mean" features, for example to generate images with an MRF:

mcRBMs on TIMIT

- mcRBM applied to speech recognition (phones, speaker independent, TIMIT)
- (Dahl, et al.; 2010)

Method	PER
Stochastic Segmental Models [17]	36%
Conditional Random Field [18]	34.8%
Large-Margin GMM [19]	33%
CD-HMM [20]	27.3%
Augmented conditional Random Fields [20]	26.6%
Recurrent Neural Nets [21]	26.1%
Bayesian Triphone HMM [22]	25.6%
Monophone HTMs [23]	24.8%
Heterogeneous Classifiers [24]	24.4%
Deep Belief Networks(DBNs) [5]	23.0*%
Triphone HMMs discriminatively trained w/ BMMI [7]	22.7%
Deep Belief Networks with mcRBM feature extraction (this work)	21.7*%
Deep Belief Networks with mcRBM feature extraction (this work)	20.5%

Transparent motion

- Hidden variables make extracting multiple, simultaneous motions easy.
- When they fail they do so in a similar way as humans:
- Better disrimination at large angles, averaging at very small angles, "motion repulsion".
 (eq., Treue et al., 2000)
- Roland Memisevic (Uni Frankfurt)

Depth as a latent variable

- Learning a dictionary for stereo:
- Generate left-right camera pairs with known disparities.
- Predict disparity from the hidden units.
- This gives rise to a three-layer network, that may be trained with Hebbian-like learning.

Hiddens learn to encode disparities

 Can use this to encode 3d-structure implicitly, for example, for multi-view recognition.

Norb stereo features

NORB training subset:

NORB testset:

· · · · · · · · · · · · · · · · · · ·							
RBMmon	RBMbin	CC	cc+bin	RBMbin	CC	cc+bin	
73.65	60.43	34.85	31.48	63.28	38.91	36.80	

- Transformations are transformation invariant.
- The 2-D subspace projections, however, are at the same time affected by the aperture problem, so they are selective to other sources of variability, including object ID!
- We can use the aperture effect to build invariant features:

Rotation "quadrature" filters

Rotation "quadrature" filters

Representing digits using rotation aperture features

- Learn rotation features. Represent digits using aperture features.
- No video available? Fill video buffer with copies of the same image: Represent the non-transformation.

Rotated MNIST error rates

Video object features

- Humans do not recognize still images but videos of objects.
- The way in which an object changes can convey useful information about the object, including 3-D structure.
- → Learn features from videos not still images. For example, (Lee and Soatto, 2011).

The "norbjects" video dataset

"Harnessing the aperture problem"

Mocap

- (Taylor, Hinton; 2009), (Taylor, et al.; 2010)
- Learning models on mocap instead of images makes it possible to model motion style and to perform tracking.

Training	Test	Baseline	MoCorr [28]	GPLVM [13]	CMFA-VB [13]	CRBM	imCRBM-10
S1+S2+S3	S1	129.18±19.47	140.35	-	-	55.43±0.79	54.27±0.49
S1	S1		-	-	-	48.75±3.72	58.62±3.87
S1+S2+S3	S2	162.75±15.36	149.37	-	-	99.13±22.98	69.28±3.30
S2	S2		-	88.35±25.66	68.67±24.66	47.43±2.86	67.02±0.70
S1+S2+S3	S3	180.11±24.02	156.30	-	-	70.89±2.10	43.40±4.12
\$3	53		l <u>.</u>	87 30+21 60	69 59+22 22	49 81+2 19	51 43+0 92

More Tracking

• (Bazzani et al.), (Larochelle, Hinton, 2011)

Outline

- Introduction
 - Feature Learning
 - Correspondence in Computer Vision
 - Relational feature learning
- Learning relational features
 - Sparse Coding Review
 - Encoding relations
 - Inference
 - Learning
- Factorization, eigen-spaces and complex cells
 - Factorization
 - Eigen-spaces, energy models, complex cells
- 4 Applications
 - Applications
 - Conclusions

Conclusions

- Learning is a way to support simplicity and homogeneity of complex, intelligent systems.
- Feature learning even more so.
- Relational feature learning even more:
- Learning "verbs", not just "nouns", can help address more tasks with a single kind of model.
- This seems like a very good reason to have complex cells.
- One reason, why looking for correspondences across frames, across views, across modalities, etc. – is a common operation, is that mappings between modalities are often one-to-many.
- The theory provides a strong inductive bias for products and/or squaring non-linearities when building deep learning models.

Thank you

More info, code, links, etc. at

```
http://www.cs.toronto.edu/~rfm/multiview-feature-learning-cvpr/index.html
```