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@ Learning
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Modeling data with latent variables
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Sparse Coding Review
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@ Model an image-patch as the superposition of basis functions, or

“filters”:
Y= Z Wizk, yj = ijkzk
k k
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Feature Learning Graphical Model
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Synthesis model
@ Parameters w;;, connect pixels y; with code components z;
@ Dimensionality of z can be smaller, larger, or same as y

@ When the dimensionality is the same or larger, then z must be
constrained, eg. by forcing it to be sparse.
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Feature Learning Graphical Model

OO

@ Given data-set y', ..., y", adapt parameters W, inferring

2!, ..., 2"V along the way.

@ Unsupervised learning.
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Feature Learning Graphical Model
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Learning
@ For example
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@ Alternating between W and all z.
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Feature Learning Graphical Model
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Inference (“Analysis”)
@ Given new image y, compute z.

@ This is how we do recognition.
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Feature learning models
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Many Variants
@ Probabilistic vs. Non-probabilistic;
@ Directed vs. undirected;
@ Mixture vs.
@ factorial vs. non-symmetric
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Feature learning models

Yy = Z Wipzk + bqjj
k
/

@ In practice: add bias terms.
@ But we drop these for now to avoid clutter.
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Feature learning models
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@ Some sparse coding models make inference easy:
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Feature learning models

O®O
i p(y;|2z) = sigmoid( Z Wik
k

p(zkly) = sigmoid (>~ wjry;)
j
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© p(y,z) = 5 exp (X, wikyszk)

@ Contrastive Divergence learning (Hebbian-style learning)
@ Inference: p(z|y) = sigmoid (Z; wjkyj>

@ Further advantage: Allows for stacking (deep learning).
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Feature learning models
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p(zkly) = sigmoid (>~ wjry;)
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® p(y,z) = 3 exp (3 wiky;zk)

@ Contrastive Divergence learning (Hebbian-style learning)
@ Inference: p(z|y) = sigmoid (Z; wjkyj>

@ Further advantage: Allows for stacking (deep learning).
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Feature learning models
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Autoencoder

ZE = sigmoid( Z ajkyj)
J

Y; = Z WikZk
k

@ Add inference parameters A, and set z = sigmoid (Ay)
@ Learning: minw 4 >, [[y® — Wsigmoid (Ay®) ||?
@ Add a sparsity penalty for z, or corrupt inputs during training

(Vincent et al., 2008)
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Feature learning models
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Independent Components Analysis (ICA)
@ Learning: Make responses sparse, while keeping filters sensible

mul,nll Yl

st. WIw =1
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Feature learning summary

Linear inference summary

@ A lot of methods define inference through linear dependencies
between y and z.

@ PCA, ICA, Restricted Boltzmann Machine, Autoencoder, Mixture
of Gaussians, KMeans, ...
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Feature learning summary

Feature learning summary

@ Almost all methods yield Gabor filters when trained on natural
images.

@ Almost all based on the same rationale:

@ Tease apart the hidden causes of variability in the data.
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Sparse coding of images pairs?

I
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Sparse coding of images pairs?

I

@ How to extend sparse coding to model relations?
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Sparse coding of images pairs?

I

@ How to extend sparse coding to model relations?
@ Sparse coding on the concatenation?
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Sparse coding on the concatenation ?

@ A case study: Translations of binary, one-d images.

@ Suppose images are random and can change in one of three
ways:

Example Image x: Possible Image y:
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Sparse coding on the concatenation ?

@ A hidden variable that collects evidence for a shift to the right.
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Sparse coding on the concatenation ?

@ A hidden variable that collects evidence for a shift to the right.
@ What if the images are random or noisy?
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Sparse coding on the concatenation ?

@ A hidden variable that collects evidence for a shift to the right.
@ What if the images are random or noisy?
@ Can we pool over more than one pixel?

2k
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Sparse coding on the concatenation ?

@ Obviously not, because now the hidden unit would get equally
happy if it would see the non-shift (second pixel from the left).

@ The problem: Hidden variables act like OR-gates, that accumulate
evidence.
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Cross-products

@ Intuitively, it seems, what we need instead are logical ANDs, which
can represent coincidences (eg. Zetzsche et al., 2003, 2005).

@ This amounts to using the outer product L := outer(x, y):
| |

XE.:D:.:D::- | EE

@ We can unroll this matrix, and let this be the data:

K3
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Cross-products

@ In the shift-example, every component L;; of the outer-product
matrix will constitute evidence for exactly one type of shift.

@ Hiddens pool over products of pixels.

|
x (M= g m

g

.
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Cross-products
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A family of manifolds

EF
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@ An different perspective:
@ Feature learning reveals the (local) manifold structure in data.

@ When y is a transformed version of x, we can still think of y as
being confined to a manifold, but it will be a conditional manifold.

@ /dea: Learn a model for y, but let parameters be a function of x.

v
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Three-way interactions
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@ If we use a linear function, we have wj,(x) = >, wi;rx;.
@ Inference turns into:

Rk = ijk:yj E sz]kxz Y; = E WijkTiYj
J

@ Hidden units are a bilinear function of the two input images.
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Conditional sparse coding
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@ This is a feature learning model, whose parameters are
modulated by inputs.

@ So this is a conditional feature learning model.

@ (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Ohlshausen;
2007), (Memisevic, Hinton; 2007)
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An alternative visualization
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@ Each hidden variable can blend in one slice W..;. of the parameter
tensor.

@ Each slice does linear regression in “pixel space”.
@ So for binary hiddens, this is a mixture of 2 image warps.
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@ Given any two sets of variables, it is easy to infer the third.

@ As a result, inference is basically the same as in any standard
sparse coding model.

@ (Graph is tri-partite, sparse coding bi-partite.)
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Inferring z (given x and y)

@ Infer the transformation z by modulating parameters linearly:

Rk = ijkyj = Z zwmkxz yj sz]kxzy]
J
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Inferring z (given = and y)

@ The meaning of z: The transformation that takes x to y (or vice
versa).
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Inferring y (given x and z)

@ For y, we have

Yj = Z Wikzk = Z (Z wz‘jkﬂfi)zk = Zwijkivizk
k k i ik
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Inferring y (given x and z)
@ The meaning of y: “x transformed according to z”.

+ 00000
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@ Inference can mean various other things in addition.

@ For example, given x and y, how likely are these to come
together?

@ More on this type of inference later.
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Learning
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@ Training data are now pairs (z“, y“) — the points we want to
relate.

@ The parameter-gating relation shows that one way to train this
model is:

Conditional sparse coding

Predict y from «, inferring z along the way as usual.
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Conditional sparse coding
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@ The cost that data-case (z®, y“) contributes is:

Dy =D wigaizp)?
ik

J

@ Differentiating with respect to w;, just like before.
@ Inference is still linear wrt. parameters.
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Conditional sparse coding

@ Conditional sparse coding is predictive coding:

@ We model the next time frame, given the previous one.

@ Inference then provides an encoding of the transformation.

@ This is often a sensible strategy, but not always as we shall see.
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Example: Gated Boltzmann machine

O 000
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@ For a restricted Boltzmann machine, this amounts to changing the
energy function into a three-way energy (Memisevic, Hinton;
2007):

:13 Y, 2 Zwljkxlyjzk
ijk

® Then p(y, z|lz) = i exp (B(z, y, ),

Z(x) =3, exp (B(z,y,2))
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Example: Gated Boltzmann machine
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x Yy

@ For a restricted Boltzmann machine, this amounts to changing the
energy function into a three-way energy (Memisevic, Hinton;
2007):

:13 Y, 2 Zwljkxlyjzk
ijk

@ Then p(y, z|z) = Z(w) exp (E(:c, Y, z)),

Z(x) =3, exp (E(z,y, 2))
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Example: Gated auto-encoder
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@ Similar for autoencoders.
@ Both, encoder and decoder weights turn into functions of .
@ Learning the same as in a standard auto-encoder modeling y.

@ The model is still a DAG, so back-prop works exactly like in a
standard autoencoder.
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Other examples

@ (Grimes, Rao; 2005): Bi-linear sparse coding
@ (Ohlshausen et al.; 2007): Conditional, bi-linear sparse coding
@ (Luecke, et al.; 2007): Neurally inspired control unit networks
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Toy example: Conditionally trained “Hidden

flow-fields™
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Toy example: Conditionally trained “Hidden

flow-fields”, inhibitory connections
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Toy example: Learning optical flow
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“Combinatorial flowfields”
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Joint training
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@ Conditional training makes it hard to answer questions like:
@ “How likely are the given images transforms of one another?”

@ To answer questions like these, we require a joint image model,
p(x,y|z), given mapping units.
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Joint training

000
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O— 0 p(z,y, z) %exp (E(z,y,2))
8 8 7 = Z exp (E(z,y, ))
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@ (Susskind et al., 2011): Three-way Gibbs sampling in a Gated
Boltzmann Machine.

@ Can apply this to matching tasks (more later).
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Joint training
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@ For the auto-encoder, there is a simple hack:
@ Add up two conditional costs:
> (W5 = i wigrad 2 )?+ 30 (28 = 2 wiky$ 2R)?

@ This forces parameters to be able to transform in both directions.
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Joint training
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@ For the auto-encoder, there is a simple hack:
@ Add up two conditional costs:
525 (5 = Xanwignad >+ 30 (af — X wigkys )

@ This forces parameters to be able to transform in both directions.
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Pool over products

Take-home message

To gather evidence for a transformation,
let each hidden unit pool over products of input-components.
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Some references
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@ (Hinton; 1981), (v.d. Malsburg; 1981)

@ (Grimes, Rao; 2005): Bi-linear sparse coding.

@ (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Ohlshausen;
2007), (Memisevic, Hinton; 2007), (Susskind, et al., 2011)

@ (Zetzsche et al.; 2003, 2005)
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