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Modeling data with latent variables

z

y
f(z) g(y)
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Sparse Coding Review

×z5
×z4

y

×z3
×z2
×z1

Model an image-patch as the superposition of basis functions, or
“filters”:

y =
∑
k

W·kzk, yj =
∑
k

wjkzk
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Feature Learning Graphical Model

yj

z

zk

y

wjk

yαj =
∑
k

wjkz
α
k

Synthesis model
Parameters wjk connect pixels yj with code components zk
Dimensionality of z can be smaller, larger, or same as y

When the dimensionality is the same or larger, then z must be
constrained, eg. by forcing it to be sparse.
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Feature Learning Graphical Model
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yαj =
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wjkz
α
k

Learning

Given data-set y1, . . . ,yN , adapt parameters W , inferring
z1, . . . ,zN along the way.
Unsupervised learning.
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Feature Learning Graphical Model

yj

z

zk
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yαj =
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wjkz
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Learning
For example

min
W,z1,...,zN

1

N

∑
α

(
‖yα −

∑
k

zαkW.k‖2 + λ
∑
k

|zαk |
)

Alternating between W and all zα.
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Feature Learning Graphical Model

yj

z

zk

y

wjk

yαj =
∑
k

wjkz
α
k

Inference (“Analysis”)
Given new image y, compute z.
This is how we do recognition.
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Feature learning models

yj

z

zk

y

wjk

yj =
∑
k

wjkzk

Many Variants
Probabilistic vs. Non-probabilistic;
Directed vs. undirected;
Mixture vs.
factorial vs. non-symmetric
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Feature learning models

yj

wjk

zk

byj

y

z

bzk

yj =
∑
k

wjkzk + byj

In practice: add bias terms.
But we drop these for now to avoid clutter.
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Feature learning models

yj

z

zk

y

wjk

yj =
∑
k

wjkzk

Some sparse coding models make inference easy:
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Feature learning models

yj

z

zk

y

wjk p(yj |z) = sigmoid
(∑

k

wjkzk
)

p(zk|y) = sigmoid
(∑

j

wjkyj
)

Restricted Boltzmann machine (RBM)

p(y, z) = 1
Z exp

(∑
jk wjkyjzk

)
Contrastive Divergence learning (Hebbian-style learning)

Inference: p(zk|y) = sigmoid
(∑

j wjkyj

)
Further advantage: Allows for stacking (deep learning).
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Feature learning models

zk

yj

wkj

ajk

y

ŷ

ŷj

zk = sigmoid
(∑

j

ajkyj
)

yj =
∑
k

wjkzk

Autoencoder
Add inference parameters A, and set z = sigmoid (Ay)

Learning: minW,A
∑

α ‖yα −W sigmoid (Ayα) ‖2

Add a sparsity penalty for z, or corrupt inputs during training
(Vincent et al., 2008)
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Feature learning models

yj

z

y

zk

wjk

yj =
∑
k

wjkzk

Independent Components Analysis (ICA)
Learning: Make responses sparse, while keeping filters sensible

min
W
‖WTy‖1

s.t. WTW = I
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Feature learning summary

z(y) = W Ty

y(z) = Wz

yj

z

zk

y

wjk

Linear inference summary
A lot of methods define inference through linear dependencies
between y and z.
PCA, ICA, Restricted Boltzmann Machine, Autoencoder, Mixture
of Gaussians, KMeans, ...
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Feature learning summary

z(y) = W Ty

y(z) = Wz

yj

z

zk

y

wjk

Feature learning summary
Almost all methods yield Gabor filters when trained on natural
images.
Almost all based on the same rationale:
Tease apart the hidden causes of variability in the data.
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Sparse coding of images pairs?

?

x y

z

How to extend sparse coding to model relations?
Sparse coding on the concatenation?
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Sparse coding on the concatenation?

Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 42 / 174



Sparse coding on the concatenation ?

A case study: Translations of binary, one-d images.
Suppose images are random and can change in one of three
ways:

Example Image x: Possible Image y:
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Sparse coding on the concatenation ?

A hidden variable that collects evidence for a shift to the right.
What if the images are random or noisy?
Can we pool over more than one pixel?

zk
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Sparse coding on the concatenation ?

Obviously not, because now the hidden unit would get equally
happy if it would see the non-shift (second pixel from the left).
The problem: Hidden variables act like OR-gates, that accumulate
evidence.

zk

?
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Cross-products

Intuitively, it seems, what we need instead are logical ANDs, which
can represent coincidences (eg. Zetzsche et al., 2003, 2005).
This amounts to using the outer product L := outer(x,y):

We can unroll this matrix, and let this be the data:
zk

wijk
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Cross-products

In the shift-example, every component Lij of the outer-product
matrix will constitute evidence for exactly one type of shift.
Hiddens pool over products of pixels.
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A family of manifolds

y

x

An different perspective:
Feature learning reveals the (local) manifold structure in data.
When y is a transformed version of x, we can still think of y as
being confined to a manifold, but it will be a conditional manifold.
Idea: Learn a model for y, but let parameters be a function of x.
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Three-way interactions

yj

xi

x y

z

zk

If we use a linear function, we have wjk(x) =
∑

iwijkxi.
Inference turns into:

zk =
∑
j

wjkyj =
∑
j

(∑
i

wijkxi
)
yj =

∑
ij

wijkxiyj

Hidden units are a bilinear function of the two input images.
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Conditional sparse coding

yj

xi

x y

z

zk

This is a feature learning model, whose parameters are
modulated by inputs.
So this is a conditional feature learning model.
(Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Ohlshausen;
2007), (Memisevic, Hinton; 2007)
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An alternative visualization

yjxi

zk

z

x y

Each hidden variable can blend in one slice W··k of the parameter
tensor.
Each slice does linear regression in “pixel space”.
So for binary hiddens, this is a mixture of 2K image warps.
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Inference

yj

xi

x y

z

zk

Given any two sets of variables, it is easy to infer the third.
As a result, inference is basically the same as in any standard
sparse coding model.
(Graph is tri-partite, sparse coding bi-partite.)
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Inference

yj

xi

x y

z

zk

Inferring z (given x and y)
Infer the transformation z by modulating parameters linearly:

zk =
∑
j

wjkyj =
∑
k

(∑
i

wijkxi
)
yj =

∑
ij

wijkxiyj
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Inference

yj

xi

x y

z

zk

Inferring z (given x and y)
The meaning of z: The transformation that takes x to y (or vice
versa).
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Inference

yj

xi

x y

z

zk

Inferring y (given x and z)
For y, we have

yj =
∑
k

wjkzk =
∑
k

(∑
i

wijkxi
)
zk =

∑
ik

wijkxizk
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Inference

yj

xi

x y

z

zk

Inferring y (given x and z)
The meaning of y: “x transformed according to z”.
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Inference

yj

xi

x y

z

zk

Inference can mean various other things in addition.
For example, given x and y, how likely are these to come
together?
More on this type of inference later.
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Learning

yj

xi

x y

z

zk

Training data are now pairs (xα,yα) – the points we want to
relate.
The parameter-gating relation shows that one way to train this
model is:

Conditional sparse coding
Predict y from x, inferring z along the way as usual.
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Conditional sparse coding

yj

xi

x y

z

zk

The cost that data-case (xα,yα) contributes is:∑
j

(
yαj −

∑
ik

wijkx
α
i z

α
k )

2

Differentiating with respect to wijk just like before.
Inference is still linear wrt. parameters.
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Conditional sparse coding

Conditional sparse coding is predictive coding:
We model the next time frame, given the previous one.
Inference then provides an encoding of the transformation.
This is often a sensible strategy, but not always as we shall see.
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Example: Gated Boltzmann machine

yj

xi

x y

z

zk

For a restricted Boltzmann machine, this amounts to changing the
energy function into a three-way energy (Memisevic, Hinton;
2007):

E(x,y, z) =
∑
ijk

wijkxiyjzk

Then p(y, z|x) = 1
Z(x) exp

(
E(x,y, z)

)
,

Z(x) =
∑

y,z exp
(
E(x,y, z)

)
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Example: Gated auto-encoder

xi
zzk

yj y

ŷj

x

Similar for autoencoders.
Both, encoder and decoder weights turn into functions of x.
Learning the same as in a standard auto-encoder modeling y.
The model is still a DAG, so back-prop works exactly like in a
standard autoencoder.
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Other examples

(Grimes, Rao; 2005): Bi-linear sparse coding
(Ohlshausen et al.; 2007): Conditional, bi-linear sparse coding
(Luecke, et al.; 2007): Neurally inspired control unit networks
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Toy example: Conditionally trained “Hidden
flow-fields”
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Toy example: Conditionally trained “Hidden
flow-fields”, inhibitory connections
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Toy example: Learning optical flow

xtestx y z y(xtest, z)
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“Combinatorial flowfields”

xtestx y z y(xtest, z)
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Joint training

yjxi

zk

z

x y

Conditional training makes it hard to answer questions like:
“How likely are the given images transforms of one another?”
To answer questions like these, we require a joint image model,
p(x,y|z), given mapping units.
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Joint training

yjxi

zk

z

x y

E(x,y, z) =
∑
ijk

wijkxiyjzk

p(x,y, z) =
1

Z
exp

(
E(x,y, z)

)
Z =

∑
x,y,z

exp
(
E(x,y, z)

)

(Susskind et al., 2011): Three-way Gibbs sampling in a Gated
Boltzmann Machine.
Can apply this to matching tasks (more later).
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Joint training

xi
zzk

yj y

ŷj

x

For the auto-encoder, there is a simple hack:
Add up two conditional costs:∑

j

(
yαj −

∑
ik wijkx

α
i z

α
k )

2+
∑

i

(
xαi −

∑
jk wijky

α
j z

α
k )

2

This forces parameters to be able to transform in both directions.
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Joint training
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α
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Pool over products

Take-home message
To gather evidence for a transformation,

let each hidden unit pool over products of input-components.
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Some references

yjxi

zk

z

x y

(Hinton; 1981), (v.d. Malsburg; 1981)
(Grimes, Rao; 2005): Bi-linear sparse coding.
(Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Ohlshausen;
2007), (Memisevic, Hinton; 2007), (Susskind, et al., 2011)
(Zetzsche et al.; 2003, 2005)
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