Outline

- Introduction
 - Feature Learning
 - Correspondence in Computer Vision
 - Relational feature learning
- Learning relational features
 - Sparse Coding Review
 - Encoding relations
 - Inference
 - Learning
- Factorization, eigen-spaces and complex cells
 - Factorization
 - Eigen-spaces, energy models, complex cells
- 4 Applications
 - Applications
 - Conclusions

Outline

- Introduction
 - Feature Learning
 - Correspondence in Computer Vision
 - Relational feature learning
- Learning relational features
 - Sparse Coding Review
 - Encoding relations
 - Inference
 - Learning
- Factorization, eigen-spaces and complex cells
 - Factorization
 - Eigen-spaces, energy models, complex cells
- 4 Applications
 - Applications
 - Conclusions

Modeling data with latent variables

Sparse Coding Review

 Model an image-patch as the superposition of basis functions, or "filters":

$$\mathbf{y} = \sum_{k} W_{\cdot k} z_k, \quad y_j = \sum_{k} w_{jk} z_k$$

$$y_j^{\alpha} = \sum_k w_{jk} z_k^{\alpha}$$

Synthesis model

- ullet Parameters w_{jk} connect pixels y_j with code components z_k
- ullet Dimensionality of z can be smaller, larger, or same as y
- When the dimensionality is the same or larger, then z must be constrained, eg. by forcing it to be sparse.

$$y_j^{\alpha} = \sum_k w_{jk} z_k^{\alpha}$$

Learning

- Given data-set y^1, \ldots, y^N , adapt parameters W, inferring z^1, \ldots, z^N along the way.
- Unsupervised learning.

$$y_j^{\alpha} = \sum_k w_{jk} z_k^{\alpha}$$

Learning

For example

$$\min_{W, \boldsymbol{z}^1, \dots, \boldsymbol{z}^N} \frac{1}{N} \sum_{\alpha} \left(\| \boldsymbol{y}^{\alpha} - \sum_{k} z_k^{\alpha} W_{.k} \|^2 + \lambda \sum_{k} |z_k^{\alpha}| \right)$$

• Alternating between W and all z^{α} .

$$y_j^{\alpha} = \sum_k w_{jk} z_k^{\alpha}$$

Inference ("Analysis")

- Given new image y, compute z.
- This is how we do recognition.

$$y_j = \sum_k w_{jk} z_k$$

Many Variants

- Probabilistic vs. Non-probabilistic;
- Directed vs. undirected;
- Mixture vs.
- factorial vs. non-symmetric

$$y_j = \sum_k w_{jk} z_k + \frac{b_j^y}{j}$$

- In practice: add bias terms.
- But we drop these for now to avoid clutter.

$$y_j = \sum_k w_{jk} z_k$$

• Some sparse coding models make inference easy:

$$p(y_j|\mathbf{z}) = \operatorname{sigmoid}(\sum_k w_{jk} z_k)$$

$$p(z_k|\boldsymbol{y}) = \operatorname{sigmoid}\left(\sum_j w_{jk}y_j\right)$$

Restricted Boltzmann machine (RBM)

- $p(\boldsymbol{y}, \boldsymbol{z}) = \frac{1}{Z} \exp\left(\sum_{jk} w_{jk} y_j z_k\right)$
- Contrastive Divergence learning (Hebbian-style learning)
- Inference: $p(z_k|\mathbf{y}) = \operatorname{sigmoid}\left(\sum_j w_{jk}y_j\right)$
- Further advantage: Allows for stacking (deep learning).

$$p(y_j|\mathbf{z}) = \text{sigmoid}(\sum_k w_{jk} z_k)$$

$$p(z_k|\boldsymbol{y}) = \operatorname{sigmoid}(\sum_j w_{jk}y_j)$$

Restricted Boltzmann machine (RBM)

- $p(\boldsymbol{y}, \boldsymbol{z}) = \frac{1}{Z} \exp\left(\sum_{jk} w_{jk} y_j z_k\right)$
- Contrastive Divergence learning (Hebbian-style learning)
- Inference: $p(z_k|\mathbf{y}) = \operatorname{sigmoid}\left(\sum_j w_{jk}y_j\right)$
- Further advantage: Allows for stacking (deep learning).

$$z_k = \operatorname{sigmoid}\left(\sum_j a_{jk} y_j\right)$$
$$y_j = \sum_k w_{jk} z_k$$

Autoencoder

- Add inference parameters A, and set $z = \operatorname{sigmoid}(Ay)$
- Learning: $\min_{W,A} \sum_{\alpha} \| \boldsymbol{y}^{\alpha} W \operatorname{sigmoid} (A \boldsymbol{y}^{\alpha}) \|^2$
- Add a sparsity penalty for z, or corrupt inputs during training (Vincent et al., 2008)

$$y_j = \sum_k w_{jk} z_k$$

Independent Components Analysis (ICA)

Learning: Make responses sparse, while keeping filters sensible

$$\min_{W} \|W^{\mathrm{T}} \boldsymbol{y}\|_{1}$$

s.t.
$$W^{\mathrm{T}} W = I$$

Feature learning summary

$$oldsymbol{z}(oldsymbol{y}) \ = \ oldsymbol{W}^{\mathrm{T}}oldsymbol{y} \ oldsymbol{y}(oldsymbol{z}) \ = \ oldsymbol{W}oldsymbol{z} \ oldsymbol{0} oldsymbol{0} oldsymbol{y}_{ij} oldsymbol{0} oldsymbol{0}$$

Linear inference summary

- A lot of methods define inference through linear dependencies between y and z.
- PCA, ICA, Restricted Boltzmann Machine, Autoencoder, Mixture of Gaussians, KMeans, ...

Feature learning summary

Feature learning summary

- Almost all methods yield Gabor filters when trained on natural images.
- Almost all based on the same rationale:
- Tease apart the hidden causes of variability in the data.

Outline

- Introduction
 - Feature Learning
 - Correspondence in Computer Vision
 - Relational feature learning
- Learning relational features
 - Sparse Coding Review
 - Encoding relations
 - Inference
 - Learning
- Factorization, eigen-spaces and complex cells
 - Factorization
 - Eigen-spaces, energy models, complex cells
- 4 Applications
 - Applications
 - Conclusions

Sparse coding of images pairs?

- How to extend sparse coding to model relations?
- Sparse coding on the concatenation?

Sparse coding of images pairs?

- How to extend sparse coding to model relations?
- Sparse coding on the *concatenation*?

Sparse coding of images pairs?

- How to extend sparse coding to model relations?
- Sparse coding on the *concatenation*?

- A case study: Translations of binary, one-d images.
- Suppose images are random and can change in one of three ways:

Example Image \boldsymbol{x} : Possible Image \boldsymbol{y} :

- A hidden variable that collects evidence for a shift to the right.
- What if the images are random or noisy?
- Can we pool over more than one pixel?

- A hidden variable that collects evidence for a shift to the right.
- What if the images are random or noisy?
- Can we pool over more than one pixel?

- A hidden variable that collects evidence for a shift to the right.
- What if the images are random or noisy?
- Can we pool over more than one pixel?

- Obviously not, because now the hidden unit would get equally happy if it would see the non-shift (second pixel from the left).
- The problem: Hidden variables act like OR-gates, that accumulate evidence.

- Intuitively, it seems, what we need instead are logical ANDs, which can represent coincidences (eg. Zetzsche et al., 2003, 2005).
- This amounts to using the outer product $L := \text{outer}(\boldsymbol{x}, \boldsymbol{y})$:

We can unroll this matrix, and let this be the data:

- In the shift-example, every component L_{ij} of the outer-product matrix will constitute evidence for exactly *one* type of shift.
- Hiddens pool over products of pixels.

- In the shift-example, every component L_{ij} of the outer-product matrix will constitute evidence for exactly *one* type of shift.
- Hiddens pool over products of pixels.

- In the shift-example, every component L_{ij} of the outer-product matrix will constitute evidence for exactly *one* type of shift.
- Hiddens pool over products of pixels.

A family of manifolds

- An different perspective:
- Feature learning reveals the (local) manifold structure in data.
- When y is a transformed version of x, we can still think of y as being confined to a manifold, but it will be a *conditional manifold*.
- Idea: Learn a model for y, but let parameters be a function of x.

Three-way interactions

- If we use a linear function, we have $w_{jk}(x) = \sum_i w_{ijk} x_i$.
- Inference turns into:

$$z_k = \sum_j w_{jk} y_j = \sum_j \left(\sum_i w_{ijk} x_i\right) y_j = \sum_{ij} w_{ijk} x_i y_j$$

• Hidden units are a **bilinear** function of the two input images.

Conditional sparse coding

- This is a feature learning model, whose parameters are modulated by inputs.
- So this is a conditional feature learning model.
- (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Ohlshausen; 2007), (Memisevic, Hinton; 2007)

An alternative visualization

- Each hidden variable can blend in one *slice* $W_{\cdot \cdot \cdot k}$ of the parameter tensor.
- Each slice does linear regression in "pixel space".
- ullet So for binary hiddens, this is a **mixture of** 2^K **image warps**.

Outline

- Introduction
 - Feature Learning
 - Correspondence in Computer Vision
 - Relational feature learning
- Learning relational features
 - Sparse Coding Review
 - Encoding relations
 - Inference
 - Learning
- Factorization, eigen-spaces and complex cells
 - Factorization
 - Eigen-spaces, energy models, complex cells
- 4 Applications
 - Applications
 - Conclusions

Inference

- Given any two sets of variables, it is easy to infer the third.
- As a result, inference is basically the same as in any standard sparse coding model.
- (Graph is tri-partite, sparse coding bi-partite.)

Inferring z (given x and y)

Infer the transformation z by modulating parameters linearly:

$$z_k = \sum_j w_{jk} y_j = \sum_k \left(\sum_i w_{ijk} x_i\right) y_j = \sum_{ij} w_{ijk} x_i y_j$$

Inferring z (given x and y)

• The meaning of z: The *transformation* that takes x to y (or vice versa).

Inferring y (given x and z)

ullet For y, we have

$$y_j = \sum_k w_{jk} z_k = \sum_k \left(\sum_i w_{ijk} x_i\right) z_k = \sum_{ik} w_{ijk} x_i z_k$$

Inferring y (given x and z)

• The meaning of y: "x transformed according to z".

- Inference can mean various other things in addition.
- For example, given x and y, how likely are these to come together?
- More on this type of inference later.

Outline

- Introduction
 - Feature Learning
 - Correspondence in Computer Vision
 - Relational feature learning
- Learning relational features
 - Sparse Coding Review
 - Encoding relations
 - Inference
 - Learning
- Factorization, eigen-spaces and complex cells
 - Factorization
 - Eigen-spaces, energy models, complex cells
- 4 Applications
 - Applications
 - Conclusions

Learning

- Training data are now **pairs** (x^{α}, y^{α}) the points we want to relate.
- The parameter-gating relation shows that one way to train this model is:

Conditional sparse coding

Predict y from x, inferring z along the way as usual.

Conditional sparse coding

• The cost that data-case $(\boldsymbol{x}^{\alpha},\boldsymbol{y}^{\alpha})$ contributes is:

$$\sum_{j} \left(y_j^{\alpha} - \sum_{ik} w_{ijk} x_i^{\alpha} z_k^{\alpha} \right)^2$$

- Differentiating with respect to w_{ijk} just like before.
- Inference is still linear wrt. parameters.

Conditional sparse coding

- Conditional sparse coding is predictive coding:
- We model the next time frame, given the previous one.
- Inference then provides an encoding of the transformation.
- This is often a sensible strategy, but not always as we shall see.

Example: Gated Boltzmann machine

 For a restricted Boltzmann machine, this amounts to changing the energy function into a three-way energy (Memisevic, Hinton; 2007):

$$E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{ijk} w_{ijk} x_i y_j z_k$$

• Then $p(y, z|x) = \frac{1}{Z(x)} \exp \left(E(x, y, z)\right)$, $Z(x) = \sum_{y,z} \exp \left(E(x, y, z)\right)$

Example: Gated Boltzmann machine

 For a restricted Boltzmann machine, this amounts to changing the energy function into a three-way energy (Memisevic, Hinton; 2007):

$$E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{ijk} w_{ijk} x_i y_j z_k$$

• Then $p(y, z|x) = \frac{1}{Z(x)} \exp(E(x, y, z)),$ $Z(x) = \sum_{y \in z} \exp(E(x, y, z))$

Example: Gated auto-encoder

- Similar for autoencoders.
- ullet Both, encoder and decoder weights turn into functions of x.
- ullet Learning the same as in a standard auto-encoder modeling y.
- The model is still a DAG, so back-prop works exactly like in a standard autoencoder.

Other examples

- (Grimes, Rao; 2005): Bi-linear sparse coding
- (Ohlshausen et al.; 2007): Conditional, bi-linear sparse coding
- (Luecke, et al.; 2007): Neurally inspired control unit networks

Toy example: Conditionally trained "Hidden flow-fields"

Toy example: Conditionally trained "Hidden flow-fields", inhibitory connections

Toy example: Learning optical flow

"Combinatorial flowfields"

- Conditional training makes it hard to answer questions like:
- "How likely are the given images transforms of one another?"
- To answer questions like these, we require a joint image model, p(x,y|z), given mapping units.

$$E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{ijk} w_{ijk} x_i y_j z_k$$

$$p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \frac{1}{Z} \exp \left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right)$$
$$Z = \sum_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}} \exp \left(E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right)$$

- (Susskind et al., 2011): Three-way Gibbs sampling in a Gated Boltzmann Machine.
- Can apply this to matching tasks (more later).

- For the auto-encoder, there is a simple hack:
- Add up two conditional costs:

$$\sum_{j} \left(y_j^{\alpha} - \sum_{ik} w_{ijk} x_i^{\alpha} z_k^{\alpha} \right)^2 + \sum_{i} \left(x_i^{\alpha} - \sum_{jk} w_{ijk} y_j^{\alpha} z_k^{\alpha} \right)^2$$

• This forces parameters to be able to transform in both directions.

- For the auto-encoder, there is a simple hack:
- Add up two conditional costs:

$$\sum_{j} \left(y_j^{\alpha} - \sum_{ik} w_{ijk} x_i^{\alpha} z_k^{\alpha} \right)^2 + \sum_{i} \left(x_i^{\alpha} - \sum_{jk} w_{ijk} y_j^{\alpha} z_k^{\alpha} \right)^2$$

This forces parameters to be able to transform in both directions.

Pool over products

Take-home message

To gather evidence for a transformation, let each hidden unit pool over products of input-components.

Some references

- (Hinton; 1981), (v.d. Malsburg; 1981)
- (Grimes, Rao; 2005): Bi-linear sparse coding.
- (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Ohlshausen; 2007), (Memisevic, Hinton; 2007), (Susskind, et al., 2011)
- (Zetzsche et al.; 2003, 2005)