University of Toronto

Faculty of Artsand Science
Midterm Examination — February 24", 2000

CSC209S

Duration — 50 Minutes

Examiner: W. James MacL ean

PLEASE HAND | N WHEN DONE

Instructions
No aids allowed.

Check to make sure you have all 7 pages.
On the back page a list of UNIX function prototypes has been provided to assist you.
Y ou may detach this sheet (last page only).
Read the entire exam paper before you start.
Answer all questions in the space provided.
Attempt answers to all questions.

Not all questions are of equal value, so budget your time accordingly.
All shell questions assume csh and all programming questions are in ANSI C.

When writing C programs, you are not expected to remember (or mention) the name
of include files used by system calls

Thereisatota of 45 marks.

Please Complete This Section

Name Family Name:

Given Names: SOLUTIONS
Student Number:
Marks
Q1 7.4/15
Q2 5.0/10
Q3 5.3/10
Q4 5.5/10
Total | 51.6%

CSC209 Exam

Spring 2000

Page 1

1. [15 Marks] Recall that in a UNIX filesystem, afile may have more than one
name. Writea'C' program to find all filenamesin adirectory that refer to the
same file. The program takes one (non-optional) command line argument; the
name of afile. Your program will then find al filenames in the same directory
that refer to the samefile.

#i ncl ude <stdio. h> /1 many of you did not read the instructions
#i ncl ude <sys/types.h> [/ regarding include files

#i ncl ude <sys/stat.h>

#i ncl ude <dirent. h>

#i ncl ude <string. h>

int min(int argc®, char *argv[]®) // it's a program need to declare

{ /1 main()
char fileNane[256] = "" ;
char di r Name [256] =
i nt | ast Sl ash
struct stat buf ; @ struct stat *buf wong, but got mark
D R *dir ;O
struct dirent *entry ; O

if (argc '=2) ©

{
fprintf(stderr,"Usage: % <fileName>\n", argv[O0]);
return 1 ;
}
| ast Slash = strlen(argv[1l]) - 1; ® for separating file/directory nane
while (argv[1l][lastSlash] !="/"'" && lastSlash >= 0) |astSlash--
if (lastSlash >= 0) {
strncpy(dirNanme, argv[1l], lastSlash + 1);

di rName[|l ast Sl ash + 1] = 0 ;
}
strcpy(fileNanme, argv[1l] + lastSlash + 1);
if (stat(argv[l], &buf) @ == -10)

fprintf(stderr,"Unable to stat() %!'\n", argv[1]);
return 2 ,

}

dir = opendir(dirNane); O
if (dir == (DIR *)NULL) ©

fprintf(stderr,"Unable to open directory % for reading!\n",
di r Nane) ;

return 3;
}
while ((entry = readdir(dir)) != (struct dirent *)NULL) ©

if (entry->d_ino == buf.st_ino) ©

printf("%\n", entry->d_nane),

closedir(dir); ©

return O ;

CSC209 Exam Spring 2000 Page 2

Y ou didn't need a program as complete as what | have shown here, but it had to
contain certain key points ...

Alternate method: scan directory to find a name matching the one given, record the
inode number, rewind the directory and then look for matches

If you could describe the basic agorithm but did not give code, you got 3 marks
Many did opendir(argv[1]) instead of parsing to get dirname/filename

Many thought this question was just about symbolic links—thisiswrong

Many people used strcmp() to compare names ... this does not do what the question
asked

The system call system(const char * command) does not return the output from the
command executed

Y ou can't get the current working directory from getenv()

There was no need to use open()/fopen() for this question

Comparing two files byte-for-byte is wrong: they could be identical but different

CSC209 Exam Spring 2000 Page 3

2. [10 Marks] Consider the output from the UNIX utility "df" below:

Fil esystem kbyt es used avail capacity Mounted on
/ dev/ dsk/ cOt 0d0sO 369639 230289 102390 70%

/ proc 0 0 0 0% / proc

fd 0 0 0 0% /dev/fd

/ dev/ dsk/ cOt 0d0s6 369639 20977 311702 7% / var

/ dev/ dsk/ cOt 0d0s7 123455 78102 33013 71% / cache
swap 604568 9168 595400 2% /tnp

Write a CSH script named df Check to do the following:

1) Calculate the total capacity of all mounted filesystems,
2) Cdculate the total available capacity of al mounted file systems,
3) Cdculate the average total and available capacities of all mounted filesystems.

Also, the script isto take an optional parameter which, if specified, is a patterm which the
filesystem name must match to be included. For example:

% df Check '/ dev*'

only includes those filesystems whose names start with '/ dev'.

#! /usr/bin/csh -f @

#

CSC209S Mdterm Feb 24th, 2000
Question #2

get raw data, and del ete header I|ine

set data = ""df """ @
shift data
if ($#argv == 1) then © read conmand |ine paraneter
set pattern = "S$argv[1]"
el se
set pattern =
endi f
@sunCapacity = 0 @ initialize variables
@sumivail =0
set i =1
while ($i <= $#data) @ |loop through data
set y = ($data[$i])
if ("$pattern” =~ "" || "$y[1l]" =~ $pattern) then @ conpare pattern
@sunCapacity = $sunCapacity + $y[2] © update suns
@ sumAvai | = $sumpvai | + $y[4]
endi f
@i =% +1

end

@ aveCapacity
@ aveAvai |

$sunCapacity / $#data @ cal c averages
$sumAvai | | $#data

CSC209 Exam Spring 2000 Page 4

echo Total capacity = $sunCapacity kbytes @ output results
echo Total available = $sumivail kbytes

echo Average capacity = $aveCapacity kbytes

echo Average avail abl e = $aveAvai |l kbytes

You didn't need script as conplete as | have shown here, but it
neede to contain certain key points

csh array indices start from1, not O

If $#argv == 1, then you have one paraneter

set data = ""df | grep $argv[1l] " doesn't work: it matches the
pattern anywhere in the line, not just in the first field as you
wer e supposed to do; could use "“df | grep "$argv[1l] "

If you use set data = " <command>"", you can't use foreach item

($data) to loop through the data, as it destroys the line-by-line
structuring

CSC209 Exam Spring 2000 Page 5

3. [10 Marks] Write a CSH script named | | s to list only filenames that are
symbolic links. The script takes one optional argument, which is the name of a
directory to use when looking for the links. When no argument is specified, the
search is conducted in the current working directory.

#!/usr/bin/csh -f ©

#

CSC209S M dterm Feb 24th, 2000
Question #3

set args = ""
if ($#argv == 1) then
if (! -d $argv[l]) then ©
echo $argv[1l] not a directory!
exit
endi f
set args = $argv[1l] ©
else if ($#argv > 1) then ©
echo "Usage: $0 <file|directory>"
exit
endi f

set links = "Is -1 -aF $args ® | grep @® | tr -d @
if ($#links > 0) then

echo Synbolic Links:

foreach link ($links) ©
echo $link ©

end

el se
echo No synbolic |inks found

endi f

Your script didn't need to be as conplete as this, but still needed
to contain certain key points

you must check that $argv[1l] is a valid directory
many people left $' s off of variable references
if ..then syntax was sloppy in nbst answers

"“lI's $argv[1l] -aF | grep @" ok, except error occurs if no command
| ine paraneter given ..

could also look for '"I' as the first character in the perm ssions
field: ""Is -al $args | grep ~ ™"

"argc" doesn't exist in csh scripts

m ght check if "stat $file | grep synbolic" is enpty?

"Is -s" doesn't list synmbolic |inks

“if (-1 $file)" doesn't test for synbolic links, since "-1" isn't
defined in csh

CSC209 Exam Spring 2000 Page 6

b)

d)

f)

9)

h)

)

[10 Marks] Briefly answer the following (assume 1 mark each unless otherwise
indicated)

What is the difference between a program and a process?

A program is an executable file, a process is an executing instance of a program.
Whét is an inode?
An inode is adata-structure used by afile system to store important information

about a physical file on the hard disk. (need to say 'node' or 'data structure; inode
isnot a'number")

How can you test whether a pathname is absolute or relative?

If the first character is/ (not '\'!), then the name is an absolute path. All others are
relative.

How can you delete the file named f r ed| bar ney. c ?

rm"fred| barney.c" o rmfred\| barney.c

Isadirectory file aregular file?

No.

If you have execute-permission for adirectory, can you delete afile in that
directory (Yes/No)?

No. Y ou need write permission on the directory. Write permission on file not
necessary.

What is the purpose of the csh variable noclobber?

When set, it prevents accidental overwriting of files vial/O redirection.

How can you execute a shell script without a new shell process being created?
Use "source'”.

Define what the UNIX term zombie means.

A zombie is a process that has terminated but not had its return status read. A
terminated child does not send asignal to the parent ... UNIX kernel does.

Demonstrate briefly how to check to seeif any child processes have terminated
without blocking.

int status, pid ;
if ((pid=waitpid(-1, &tatus, WNOHANG)) !'= -1)
printf("Child %d has exited.\n", pid);

CSC209 Exam Spring 2000 Page 7

Macros & Function Prototypes

1/0

char *fgets(char *s, int n, FILE *stream
FILE *fopen(const char *file, const char *node)
int close(int fd)

i

int dup(int fd)

int dup2(int fd, int oldfd)

int fcl ose(FILE *stream

int FD | SSET(int fd, fd_set &fds)

int feof (FILE *stream;

int ferror(FILE *stream;

int fflush(FILE *stream

int fileno(FILE *stream

int fprintf(FILE *stream const char *format, .)

int fscanf (FILE *stream const char *format, .)

int listen(int soc, int n)

int open(const char *path, int oflag)

int pipe(int filedes[2])

int select(int nfds, fd_set *readfds, fd_set *witefds,
struct tineval *timeout)

int sprintf(char *s, const char *format, .)

int wite(int fd, void *buf, int nbyte)

ssize_t read(int fd, void *buf, size_t nbyte)
voi d FD CLEAR(int fd, fd_set &fds)

voi d FD SET(int fd, fd_set &fds)

voi d FD_ZERQ(&f d_set)

IPC

FI LE *popen(char *cndStr, char *npde)

nt accept (i nt soc, struct sockaddr *addr, int addrlen)
nt bi nd(int soc, struct sockaddr *addr, int addrlen)
nt connect (i nt soc, struct sockaddr *addr, int addrlen)

i
i
i
int pcl ose(FI LE *strean)

int senttl (int semd, int sermum int cnd, ...);
int senget (key_t key, int nsens, int senflags);
i
i
i
i
i

nt senpp(int sem d, stuct senpps *semops, int nops);

nt shnget (key_t key, size_t size, int shnflg);

nt shnttl (int shmd, int cnd, struct shmd_ds *buf);

nt shndt (voi d *shmaddr) ;
nt socket (int famly, int type, int protocol)

void *shmat (i nt shmid, const void *shmaddr, int shnflg);

Process Management

nt execl (const char *path, char *argvO, .., (char *)O0)
nt execl e(const char *path, char *argvO, .., (char *)O0,
nt execl p(const char *file, char *argvO, .., (char *)O0)

nt execv(const char *path, char *argv[])

nt execve(const char *path, char *argv[], const char *envp[])

i

i

i

i

i

int execvp(const char *file, char *argv[])
int kill(int pid, int signo)

int wai t (i nt &status)

int wai tpid(int pid, int *stat, int options)
int W FEXI TED(i nt status)

int W FSTOPPED(i nt st atus)

int W FSI GNALLED(i nt st at us)

int VEXI TSTATUS(st at us)

int WIERMSI (i nt st at us)

int WSTOPSI (i nt status)

pid_t fork(void)

Signals

int pause(voi d)

unsi gned al ar m(unsi gned nsec)

void (*signal (int sig, void (*disp)(int)))(int)
void (*sigset(int sig, void (*disp)(int)))(int)

*except f ds,

const char *envp[])

CSC209 Exam December 1999

Aid Sheet, Page 1 of 2

Threads

int pnutex_destroy(pthread_nutex_t *nutex)
int pthread_nutex_init(pthread_nutex_t *nmutex, const pthread_nutex_attr_t *attr)
int pnutex_| ock(pthread_nutex_t *mnutex)
int pmutex_unl ock(pthread_mutex_t *mutex)
int pthread_cond_init(pthread_cond_t * const pthread_condattr_t *attr);
int pthread_cond_wait(pthread_cond_t *cond pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t * pthread_nutex_t *nutex,
const struct tinespec *abstine);
nt pthread_cond_signal (pthread_cond_t *cond);
nt pthread_cond_broadcast (pthread_cond_t *cond);
nt pthread_cond_destroy(pthread_cond_t *cond);
nt pthread_create(pthread_t *new thread_| D, const pthread_attr_t *attr,
void * (*start_func)(void *), void *arg);
nt pthread_detach(pthread_t threadl D);
nt pthread_join(pthread_t target_thread, void **status);
nt pthread_key_create(pthread_key_t *keyp, void (*destructor)(void *val ue));
nt pthread_key_del ete(pthread_key_t key);
nt pthread_once(pthread_once_t *once_control, void (*init_routine)(void));
nt pthread_setspecific(pthread_key_t key, const void *val ue);
pthread_t pthread_sel f(void);
voi d pthread_exit(void *status);
voi d *pthread_getspecific(pthread_key_t key);

String Handling

char *strtok(char *s, const char *delim

char *strcpy(char *dest, const char *srce)

char *strncpy(char *dest, const char *srce, int count)
int strlen(const char *s)

int strcnmp(const char *sl1, const char *s2)

int strncnmp(const char *s1, const char *s2, int count)

Time struct tineval {

char *asctime(const struct tm*tm; unsi gned | ong tv_sec
char *ctime(const tine_t *clock); unsi gned | ong tv_usec ;
struct tm*gntine(const time_t *clock); }

struct tm*localtinme(const tine_t *clock);

time_t time(tine_t *tloc);

Directory Structure

DR *opendi r (const char *fil enane); struct dirent {

int access(const char *path, int anpde); ino t d ino:

int closedir(DIR *dirp); of f t d of f -

int | stat (const char *path, struct stat *buf); unsi_gned short dr eci en:
int S | SDI R(node) ; char d_narre[l]’ .
int S | SREG(node) ; } - ’
int stat (const char *path, struct stat *buf);

| ong telldir(DR *dirp);

struct dirent *readdir(D R *dirp);
struct dirent *readdir_r(DIR *dirp, struct dirent *entry);

voi d rewi nddi r (DI R *dirp);

voi d seekdir (DR *dirp, long loc);

struct stat {
nmode_t st _node; /* File npde (see nmknod(2)) */
ino_t st _ino; /* inode of file */
time_t st_atime; /* Time of |ast access */
time_t st_ntinme; /* Time of last data nodification */
time_t st_ctime; /* Time of last file status change */
of f _t st _si ze; /* File size in bytes */
nlink_t st_nlink; /* Number of links */
uid_t st _uid; /* User IDof the file's owner */
gid_t st_gid; /* Group ID of the file's group */

CSC209 Exam December 1999 Aid Sheet, Page 2 of 2

