
CSC209 Exam Spring 2000 Page 1

University of Toronto
Faculty of Arts and Science

Midterm Examination — February 24th, 2000

CSC209S
Duration — 50 Minutes

Examiner: W. James MacLean

PLEASE HAND IN WHEN DONE

Instructions
• No aids allowed.
• Check to make sure you have all 7 pages.
• On the back page a list of UNIX function prototypes has been provided to assist you.

You may detach this sheet (last page only).
• Read the entire exam paper before you start.
• Answer all questions in the space provided.
• Attempt answers to all questions.
• Not all questions are of equal value, so budget your time accordingly.
• All shell questions assume csh and all programming questions are in ANSI C.
• When writing C programs, you are not expected to remember (or mention) the name

of include files used by system calls
• There is a total of 45 marks.

Please Complete This Section
Name Family Name:

Given Names: SOLUTIONS
Student Number:

Marks
Q1 7.4/15
Q2 5.0/10
Q3 5.3/10
Q4 5.5/10

Total 51.6%

CSC209 Exam Spring 2000 Page 2

1. [15 Marks] Recall that in a UNIX filesystem, a file may have more than one
name. Write a 'C' program to find all filenames in a directory that refer to the
same file. The program takes one (non-optional) command line argument; the
name of a file. Your program will then find all filenames in the same directory
that refer to the same file.

#include <stdio.h> // many of you did not read the instructions
#include <sys/types.h> // regarding include files
#include <sys/stat.h>
#include <dirent.h>
#include <string.h>

int main(int argc�, char *argv[]�) // it's a program, need to declare
{ // main()
 char fileName[256] = "" ;
 char dirName [256] = "." ;
 int lastSlash ;
 struct stat buf ; � struct stat *buf wrong, but got mark
 DIR *dir ; �
 struct dirent *entry ; �

 if (argc != 2) �
 {
 fprintf(stderr,"Usage: %s <fileName>\n", argv[0]);
 return 1 ;
 }

 lastSlash = strlen(argv[1]) - 1; � for separating file/directory name
 while (argv[1][lastSlash] != '/' && lastSlash >= 0) lastSlash-- ;
 if (lastSlash >= 0) {
 strncpy(dirName, argv[1], lastSlash + 1);
 dirName[lastSlash + 1] = 0 ;
 }
 strcpy(fileName, argv[1] + lastSlash + 1);

 if (stat(argv[1], &buf) � == -1�)
 {
 fprintf(stderr,"Unable to stat() %s!\n", argv[1]);
 return 2 ;
 }

 dir = opendir(dirName); �
 if (dir == (DIR *)NULL) �
 {
 fprintf(stderr,"Unable to open directory %s for reading!\n",
dirName);
 return 3;
 }
 while ((entry = readdir(dir)) != (struct dirent *)NULL) �
 if (entry->d_ino == buf.st_ino) �
 printf("%s\n", entry->d_name);
 closedir(dir); �

 return 0 ;
}

CSC209 Exam Spring 2000 Page 3

• You didn't need a program as complete as what I have shown here, but it had to
contain certain key points …

• Alternate method: scan directory to find a name matching the one given, record the
inode number, rewind the directory and then look for matches

• If you could describe the basic algorithm but did not give code, you got 3 marks
• Many did opendir(argv[1]) instead of parsing to get dirname/filename
• Many thought this question was just about symbolic links—this is wrong
• Many people used strcmp() to compare names … this does not do what the question

asked
• The system call system(const char *command) does not return the output from the

command executed
• You can't get the current working directory from getenv()
• There was no need to use open()/fopen() for this question
• Comparing two files byte-for-byte is wrong: they could be identical but different

CSC209 Exam Spring 2000 Page 4

2. [10 Marks] Consider the output from the UNIX utility "df" below:

Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 369639 230289 102390 70% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
/dev/dsk/c0t0d0s6 369639 20977 311702 7% /var
/dev/dsk/c0t0d0s7 123455 78102 33013 71% /cache
swap 604568 9168 595400 2% /tmp

Write a CSH script named dfCheck to do the following:

1) Calculate the total capacity of all mounted filesystems,
2) Calculate the total available capacity of all mounted file systems,
3) Calculate the average total and available capacities of all mounted filesystems.

Also, the script is to take an optional parameter which, if specified, is a patterm which the
filesystem name must match to be included. For example:

% dfCheck '/dev*'

only includes those filesystems whose names start with '/dev'.

#!/usr/bin/csh -f �
#
CSC209S Midterm, Feb 24th, 2000
Question #2

get raw data, and delete header line
set data = "`df`" �
shift data

if ($#argv == 1) then � read command line parameter
 set pattern = "$argv[1]"
else
 set pattern = ""
endif

@ sumCapacity = 0 � initialize variables
@ sumAvail = 0

set i = 1
while ($i <= $#data) � loop through data
 set y = ($data[$i])
 if ("$pattern" =~ "" || "$y[1]" =~ $pattern) then � compare pattern
 @ sumCapacity = $sumCapacity + $y[2] � update sums
 @ sumAvail = $sumAvail + $y[4]
 endif
 @ i = $i + 1
end

@ aveCapacity = $sumCapacity / $#data � calc averages
@ aveAvail = $sumAvail / $#data

CSC209 Exam Spring 2000 Page 5

echo Total capacity = $sumCapacity kbytes � output results
echo Total available = $sumAvail kbytes
echo Average capacity = $aveCapacity kbytes
echo Average available = $aveAvail kbytes

• You didn't need script as complete as I have shown here, but it
neede to contain certain key points

• csh array indices start from 1, not 0
• If $#argv == 1, then you have one parameter
• set data = "`df | grep $argv[1]`" doesn't work: it matches the

pattern anywhere in the line, not just in the first field as you
were supposed to do; could use "`df | grep ^$argv[1]`"

• If you use set data = "`<command>`", you can't use foreach item
($data) to loop through the data, as it destroys the line-by-line
structuring

CSC209 Exam Spring 2000 Page 6

3. [10 Marks] Write a CSH script named lls to list only filenames that are
symbolic links. The script takes one optional argument, which is the name of a
directory to use when looking for the links. When no argument is specified, the
search is conducted in the current working directory.

#!/usr/bin/csh -f �
#
CSC209S Midterm, Feb 24th, 2000
Question #3

set args = ""
if ($#argv == 1) then
 if (! -d $argv[1]) then �
 echo $argv[1] not a directory!
 exit
 endif
 set args = $argv[1] �
else if ($#argv > 1) then �
 echo "Usage: $0 <file|directory>"
 exit
endif

set links = `ls -1 -aF $args � | grep @ � | tr -d @`

if ($#links > 0) then

 echo Symbolic Links:
 foreach link ($links) �
 echo $link �
 end

else

 echo No symbolic links found

endif

• Your script didn't need to be as complete as this, but still needed
to contain certain key points

• you must check that $argv[1] is a valid directory
• many people left $'s off of variable references
• if … then syntax was sloppy in most answers
• "`ls $argv[1] -aF | grep @`" ok, except error occurs if no command

line parameter given …
• could also look for 'l' as the first character in the permissions

field: "`ls -al $args | grep ^l`"
• "argc" doesn't exist in csh scripts
• might check if "stat $file | grep symbolic" is empty?
• "ls -s" doesn't list symbolic links
• "if (-l $file)" doesn't test for symbolic links, since "-l" isn't

defined in csh

CSC209 Exam Spring 2000 Page 7

4. [10 Marks] Briefly answer the following (assume 1 mark each unless otherwise
indicated)

a) What is the difference between a program and a process?

A program is an executable file, a process is an executing instance of a program.

b) What is an inode?

An inode is a data-structure used by a file system to store important information
about a physical file on the hard disk. (need to say 'node' or 'data structure; inode
is not a 'number')

c) How can you test whether a pathname is absolute or relative?

If the first character is / (not '\'!), then the name is an absolute path. All others are
relative.

d) How can you delete the file named fred|barney.c ?

rm "fred|barney.c" or rm fred\|barney.c

e) Is a directory file a regular file?

No.

f) If you have execute-permission for a directory, can you delete a file in that
directory (Yes/No)?

No. You need write permission on the directory. Write permission on file not
necessary.

g) What is the purpose of the csh variable noclobber?

When set, it prevents accidental overwriting of files via I/O redirection.

h) How can you execute a shell script without a new shell process being created?

Use "source".

i) Define what the UNIX term zombie means.

A zombie is a process that has terminated but not had its return status read. A
terminated child does not send a signal to the parent … UNIX kernel does.

j) Demonstrate briefly how to check to see if any child processes have terminated
without blocking.

int status, pid ;
if ((pid = waitpid(-1, &status, WNOHANG)) != -1)
 printf("Child %d has exited.\n", pid);

CSC209 Exam December 1999 Aid Sheet, Page 1 of 2

Macros & Function Prototypes

I/O
char *fgets(char *s, int n, FILE *stream)
FILE *fopen(const char *file, const char *mode)
int close(int fd)
int dup(int fd)
int dup2(int fd, int oldfd)
int fclose(FILE *stream)
int FD_ISSET(int fd, fd_set &fds)
int feof(FILE *stream);
int ferror(FILE *stream);
int fflush(FILE *stream)
int fileno(FILE *stream)
int fprintf(FILE *stream, const char *format, …)
int fscanf(FILE *stream, const char *format, …)
int listen(int soc, int n)
int open(const char *path, int oflag)
int pipe(int filedes[2])
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
 struct timeval *timeout)
int sprintf(char *s, const char *format, …)
int write(int fd, void *buf, int nbyte)
ssize_t read(int fd, void *buf, size_t nbyte)
void FD_CLEAR(int fd, fd_set &fds)
void FD_SET(int fd, fd_set &fds)
void FD_ZERO(&fd_set)

IPC
FILE *popen(char *cmdStr, char *mode)
int accept(int soc, struct sockaddr *addr, int addrlen)
int bind(int soc, struct sockaddr *addr, int addrlen)
int connect(int soc, struct sockaddr *addr, int addrlen)
int pclose(FILE *stream)
int semctl(int semid, int semnum, int cmd, ...);
int semget(key_t key, int nsems, int semflags);
int semop(int semId, stuct semops *sem_ops, int nops);
int shmget(key_t key, size_t size, int shmflg);
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
int shmdt(void *shmaddr);
int socket(int family, int type, int protocol)
void *shmat(int shmid, const void *shmaddr, int shmflg);

Process Management
int execl(const char *path, char *argv0, …, (char *)0)
int execle(const char *path, char *argv0, …, (char *)0, const char *envp[])
int execlp(const char *file, char *argv0, …, (char *)0)
int execv(const char *path, char *argv[])
int execve(const char *path, char *argv[], const char *envp[])
int execvp(const char *file, char *argv[])
int kill(int pid, int signo)
int wait(int &status)
int waitpid(int pid, int *stat, int options)
int WIFEXITED(int status)
int WIFSTOPPED(int status)
int WIFSIGNALLED(int status)
int WEXITSTATUS(status)
int WTERMSIG(int status)
int WSTOPSIG(int status)
pid_t fork(void)

Signals
int pause(void)
unsigned alarm(unsigned nsec)
void (*signal(int sig, void (*disp)(int)))(int)
void (*sigset(int sig, void (*disp)(int)))(int)

CSC209 Exam December 1999 Aid Sheet, Page 2 of 2

Threads
int pmutex_destroy(pthread_mutex_t *mutex)
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *attr)
int pmutex_lock(pthread_mutex_t *mutex)
int pmutex_unlock(pthread_mutex_t *mutex)
int pthread_cond_init(pthread_cond_t * const pthread_condattr_t *attr);
int pthread_cond_wait(pthread_cond_t *cond pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t * pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_create(pthread_t *new_thread_ID, const pthread_attr_t *attr,
 void * (*start_func)(void *), void *arg);
int pthread_detach(pthread_t threadID);
int pthread_join(pthread_t target_thread, void **status);
int pthread_key_create(pthread_key_t *keyp, void (*destructor)(void *value));
int pthread_key_delete(pthread_key_t key);
int pthread_once(pthread_once_t *once_control, void (*init_routine)(void));
int pthread_setspecific(pthread_key_t key, const void *value);
pthread_t pthread_self(void);
void pthread_exit(void *status);
void *pthread_getspecific(pthread_key_t key);

String Handling
char *strtok(char *s, const char *delim)
char *strcpy(char *dest, const char *srce)
char *strncpy(char *dest, const char *srce, int count)
int strlen(const char *s)
int strcmp(const char *s1, const char *s2)
int strncmp(const char *s1, const char *s2, int count)

Time
char *asctime(const struct tm *tm);
char *ctime(const time_t *clock);
struct tm *gmtime(const time_t *clock);
struct tm *localtime(const time_t *clock);
time_t time(time_t *tloc);

Directory Structure
DIR *opendir(const char *filename);
int access(const char *path, int amode);
int closedir(DIR *dirp);
int lstat(const char *path, struct stat *buf);
int S_ISDIR(mode);
int S_ISREG(mode);
int stat(const char *path, struct stat *buf);
long telldir(DIR *dirp);
struct dirent *readdir(DIR *dirp);
struct dirent *readdir_r(DIR *dirp, struct dirent *entry);
void rewinddir(DIR *dirp);
void seekdir(DIR *dirp, long loc);

struct stat {
 mode_t st_mode; /* File mode (see mknod(2)) */
 ino_t st_ino; /* inode of file */
 time_t st_atime; /* Time of last access */
 time_t st_mtime; /* Time of last data modification */
 time_t st_ctime; /* Time of last file status change */
 off_t st_size; /* File size in bytes */
 nlink_t st_nlink; /* Number of links */
 uid_t st_uid; /* User ID of the file's owner */
 gid_t st_gid; /* Group ID of the file's group */
};

struct dirent {
 ino_t d_ino;
 off_t d_off;
 unsigned short d_reclen;
 char d_name[1];
}

struct timeval {
 unsigned long tv_sec ;
 unsigned long tv_usec ;
}

