
PLEA
SE

H
A
N
D

IN

UNIVERSITY OF TORONTO
Faculty of Arts and Science

APRIL EXAMINATIONS 2007

CSC 209H1S
St. George Campus

Duration — 3 hours
PL

EA
SE

H
A
N
D

IN

Examination aids: One 8.5 x 11 sheet of paper (double-sided)

Student Number:

Last Name:

First Name:

Instructor:

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,

and read the instructions below.)

This examination consists of 9 questions on 18 pages (including this one).
When you receive the signal to start, please make sure that your copy
of the examination is complete and fill in your student number on every
page. If you need more space for one of your solutions, use the last pages
of the exam or the back of this page and indicate clearly the part of your
work that should be marked.

1: / 9

2: / 6

3: / 6

4: / 7

5: /24

6: / 6

7: / 9

8: /11

9: /10

TOTAL: /88

Good Luck!

Total Pages = 18 Page 1 continued. . .

CSC 209H1 S Final Examination April 2007

Question 1. [9 marks]

Part (a) [5 marks]

Circle the correct answer below.

TRUE FALSE A process whose parent has not called wait is an orphaned process.

TRUE FALSE
A read on a pipe will block when there is nothing to ready to read
on the pipe.

TRUE FALSE
If a client’s request for a socket connection arrives between the times
that a server has called listen and accept, the connection will be
denied.

TRUE FALSE
If a struct is passed in as an argument in a C function, any modifi-
cations made to the contents of the struct will be visible when the
function returns

TRUE FALSE
Read and execute permissions are needed on a shell program to ex-
ecute it.

Part (b) [2 marks]

Fill in the third argument to strncat. Assume that str1 and str2 both contain valid strings.

char str1[SIZE1];
char str2[SIZE2];

strncat(str1, str2,__________________________________);

Part (c) [2 marks] Write the output of the following C snippet.

char a[10];
char *b = malloc(10 * sizeof(char));
printf("A = %d\n", sizeof(a));
printf("B = %d\n", sizeof(b));

Student #: Page 2 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Question 2. [6 marks]

The current working directory contains 3 files: hop, skip, and jump. The contents of each file are shown
below:

hop

#!/bin/sh
arg=$1
echo "Running hop"
if [-x $1]; then

$1
fi

skip

#!/bin/sh
echo "Running skip"

jump

#!/bin/sh
echo "Running jump"

For each of the following commands, give the output that would appear when the command is run. (’ is a
single quote and ‘ is a back quote.)

run="hop"

$run

echo "$run hop"

echo ’*’

echo ‘*‘

[sh]*

set ???p
echo $2

Student #: Page 3 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Question 3. [6 marks]

Part (a) [2 marks]

I told my friend who has an account on CDF that I have a program she can run in ~reid/bin/prog.
When I run ls -l ~reid/bin/prog I see -rwxr-xr-x for the permissions on the file. When she runs
~reid/bin/prog she gets “Permission denied.” What could be the cause?

Part (b) [2 marks]

What are htonl() and ntohl() for? Why do we need to use them on the port number when creating a
socket but not on character arrays that are read and written on the socket?

Part (c) [1 mark]

What could go wrong if the reader of a pipe forgets to close fd[1]?

Part (d) [1 mark] Explain why the following code is incorrect (aside from the lack of error checking).

char line[10]
int fd[2];
int newfd;
pipe(fd);
newfd = fd[0];
read(newfd, line, 10);

Student #: Page 4 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Question 4. [7 marks]

Write a C program that takes a string and a directory name as arguments and prints the names of the files
in that directory whose names end with the string. For example, if the program is called with .html foo,
then it will print the names of all of the files in foo that end with .html. (Do not create another process.)

Student #: Page 5 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Question 5. [24 marks]

The code below is the start of a very simple implementation of a shell. The only functionality in this
shell is the ability to read lines from standard input and execute a program in the background or in the
foreground. Recall that when a program is executing in the foreground, the shell user cannot start another
command until the program has terminated. If a program is started in the background by appending ’&’
to the command string, then the shell user can execute another command before the first one terminates.

You do not need to provide error handling for the given code.

Part (a) [9 marks] Complete the loop below according to the comments.

int main() {

char line[30];
char **args;
char *ptr;
int background;

while(1) {
printf (">");
fgets(line, 30, stdin);
ptr= strchr(line, ’\n’);
*ptr = ’\0’;

/* If the user typed return, then there is no command to execute */
if(strlen(line) == 0) {

continue;
}

/*mkarray returns an array of the words in line using space as a delimiter*/
args = mkarray(line);

/* If the user just typed return go back to the top of the loop */
if(args[0] == NULL) {

continue;
}

/*checkbackground returns 1 if the program should be run in the background
and 0 otherwise */
background = checkbackground(args);

/* Run the program specified by args. If the program is to be run
in the foreground, then block until the process terminates and
print a message if the program terminated normally, otherwise return
to the top of the loop to wait for the user to enter another command.
Check if any background programs have terminated, and print a message
if they terminated normally. */

Student #: Page 6 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Part (a) (continued)

Student #: Page 7 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Part (b) [8 marks]

Implement the function char **mkarray(char *line) that returns an array of the words in the string
line, using a space as the delimiter.

Part (c) [3 marks]

Based on your implementation of mkarray(), is there any memory that should be freed explicitly outside
of mkarray()? If so, show the code below that the calling process would run to free the correct memory.
State where in the loop in part (a) this code to free memory should go.

Student #: Page 8 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Part (d) [4 marks]

Write the function int checkbackground(char **args) that returns 1 if the program should be run in
the background, and 0 otherwise. (Hint: the function should modify args so that the array contains only
the function name and the actual program arguments.)

Student #: Page 9 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Question 6. [6 marks]

Write a Bourne shell program called makepath that takes a pathname as a command line argument and
creates all the components of that path if they don’t already exist. For example,

makepath foo/bar/baz

should create the directories foo, foo/bar, and foo/bar/baz. You may not use mkdir -p in your script.

You may find the following commands useful:

basename NAME - Print NAME with any leading directory components removed.
(basename / produces ’/’)

dirname NAME - Print NAME with its trailing /component removed;
if NAME contains no /’s print ’.’ (dirname / produces ’/’)

Student #: Page 10 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Question 7. [9 marks]

Part (a) [6 marks]

A CSC207 student needs some help automating tests. The student has written a program called parsewiki
that takes a file name as a command line argument and writes to standard output. The files in the directory
tests are to be used as test input to parsewiki. There is a directory called expected that contains
identically named files with the expected output.

Write a Bourne shell program that runs parsewiki on each of the files in tests, places the output in
file of the same name as the input file in a directory called actual, and then uses diff to compare the
actual output file to the expected output file, and will print the message “Test failed on file X” (where X
is replaced with the name of the file that failed) if the expected and actual output differ. No other output
should be printed.

Note that diff returns 0 if the files are the same and 1 if they differ.

Part (b) [3 marks]

Write a Bourne shell program that prints the name of each file in tests that does not have a matching
file in expected.

Student #: Page 11 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Question 8. [11 marks]

Consider the following program. Assume the program runs without error. The error handling has been
removed to make the code shorter.

void sig_int(int signo) {
write(2, "caught SIGINT\n", sizeof("caught SIGINT\n"));
/*pause();*/ /* Uncomment this line for part (c) */
/*F*/
return;

}

int main(void) {
sigset_t newmask, oldmask, pendmask;
struct sigaction newact;

sigemptyset(&newact.sa_mask);
sigaddset(&newact.sa_mask, SIGTERM);
sigaddset(&newact.sa_mask, SIGINT);
newact.sa_handler= sig_int;
newact.sa_flags = 0;
/*A*/
sigaction(SIGINT, &newact, NULL) ;

sigemptyset(&newmask);
sigaddset(&newmask, SIGTERM);
sigaddset(&newmask, SIGINT);

/*B*/
printf("Blocking signals\n");
sigprocmask(SIG_BLOCK, &newmask, &oldmask);

/*C*/
sigpending(&pendmask);
if(sigismember(&pendmask, SIGTERM))
printf("SIGTERM pending\n");
if(sigismember(&pendmask, SIGINT))
printf("SIGINT pending\n");

/*D*/
sigprocmask(SIG_SETMASK, &oldmask, NULL);
printf("Unblocking signals\n");

/*E*/
printf("All Done\n");
exit(0);

}

Student #: Page 12 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Part (a) [5 marks]

Describe what happens if the signal SIGINT arrives at the process at each of the letter markers A, B, D, E,
and F. If any output is produced write it down, otherwise write “None.” Assume the program is restarted
each time.

What happens Output

A

B

D

E

F

Student #: Page 13 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Part (b) [2 marks]

Describe what happens if the signal SIGTERM arrives at the process a markers B and D. If any output is
produced write it down, otherwise write “None.” Assume the program is restarted each time.

What happens Output

B

D

Part (c) [4 marks]

Suppose that the line with pause() is uncommented in the sig int() function, and that SIGINT arrives
such that sig int is called. What happens if SIGTERM arrives after the program calls pause()?

What if SIGQUIT arrives after the program calls pause()? (Assume the program is restarted and SIGINT
arrives such that sig int() is called.)

Student #: Page 14 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

Question 9. [10 marks]

Complete the function below that takes an array of two open socket descriptors as an argument. The
function implements a subtraction game where the players are given a number to start with. They each
take turns subtracting 1, 2 or 3 from number. The person that causes the total to reach 0 wins.

In this implementation, the players write each move on the file descriptor as an int. You can assume that
no other type of data is sent, and you do not need to verify that the number is in the correct range. You
must use select to avoid blocking.

When a player wins, write a message to both players indicating that the game has been won.

When a player sends a message out of turn, write a message on the socket descriptor telling the player,
“It’s not your turn.” If either player closes their socket, then write a message to the other player, close the
sockets, and return.

void play(int fd[]) {
int number = 21;

Student #: Page 15 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

This page is provided for rough work and any answers that didn’t fit.

Student #: Page 16 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

C function prototypes and structs:

int accept(int sock, struct sockaddr *addr, int addrlen)
int bind(int sock, struct sockaddr *addr, int addrlen)
int close(int fd)
int closedir(DIR *dir)
int connect(int sock, struct sockaddr *addr, int addrlen)
int dup2(int oldfd, int newfd)
int execlp(const char *file, char *argv0, ..., (char *)0)
int execvp(const char *file, char *argv[])
int fclose(FILE *stream)
int FD ISSET(int fd, fd set *fds)
void FD SET(int fd, fd set *fds)
void FD CLR(int fd, fd set *fds)
void FD ZERO(fd set *fds)
char *fgets(char *s, int n, FILE *stream)
int fileno(FILE *stream)
pid t fork(void)
FILE *fopen(const char *file, const char *mode)
size t fread(void *ptr, size t size, size t nmemb, FILE *stream);
size t fwrite(const void *ptr, size t size, size t nmemb, FILE *stream);
struct hostent *gethostbyname(const char *name)
unsigned long int htonl(unsigned long int hostlong)
unsigned short int htons(unsigned short int hostshort)
char *index(const char *s, int c)
int kill(int pid, int signo)
int listen(int sock, int n)
unsigned long int ntohl(unsigned long int netlong)
unsigned short int ntohs(unsigned short int netshort)
int open(const char *path, int oflag)
DIR *opendir(const char *name)
int pause(void);
int pclose(FILE *stream)
int pipe(int filedes[2])
FILE *popen(char *cmdstr, char *mode)
ssize t read(int d, void *buf, size t nbytes);
struct dirent *readdir(DIR *dir)
int select(int maxfdp1, fd set *readfds, fd set *writefds, fd set *exceptfds, struct timeval *timeout)
int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact)

/* actions include SIG_DFL and SIG_IGN */
int sigaddset(sigset t *set, int signum)
int sigemptyset(sigset t *set)
int sigprocmask(int how, const sigset t *set, sigset t *oldset)

/*how has the value SIG BLOCK, SIG UNBLOCK, or SIG SETMASK */
unsigned int sleep(unsigned int seconds)
int socket(int family, int type, int protocol)
int sprintf(char *s, const char *format, ...)
int stat(const char *file name, struct stat *buf)
char *strchr(const char *s, int c)
size t strlen(const char *s)
char *strncat(char *dest, const char *src, size t n)
int strncmp(const char *s1, const char *s2, size t n)
char *strncpy(char *dest, const char *src, size t n)
char *strrchr(const char *s, int c)

Student #: Page 17 of 18 continued. . .

CSC 209H1 S Final Examination April 2007

char *strstr(const char *haystack, const char *needle)
int wait(int *status)
int waitpid(int pid, int *stat, int options) /* options = 0 or WNOHANG*/
ssize t write(int d, const void *buf, size t nbytes);

WIFEXITED(status) WEXITSTATUS(status)
WIFSIGNALED(status) WTERMSIG(status)
WIFSTOPPED(status) WSTOPSIG(status)

Useful structs

struct sigaction {
void (*sa handler)(int);
sigset t sa mask;
int sa flags;

}
struct dirent {

int d namelen;
int d name[MAXNAMELEN];

}
struct sockaddr in {

sa family t sin family;
unsigned short int sin port;
struct in addr sin addr;
unsigned char pad[8]; /*Unused*/

}

Shell comparison operators

Shell Description

-d filename Exists as a directory
-f filename Exists as a regular file.
-r filename Exists as a readable file
-w filename Exists as a writable file.
-x filename Exists as an executable file.
-z string True if empty string
str1 = str2 True if str1 equals str2
str1 != str2 True if str1 not equal to str2
int1 -eq int2 True if int1 equals int2

-ne, -gt, -lt, -le For numbers
!=, >, >=, <, <= For strings

-a, -o And, or.

Total Marks = 88

Student #: Page 18 of 18 End of Examination

