‘?\9 UNIVERSITY OF TORONTO éo
6\ Faculty of Arts and Science QV'
%¢ DECEMBER EXAMINATIONS 2002 of’
O CSC 209H1 F Q,v'
/@ Duration — 3 hours Q\’

Examination Aids: None

Student Number: | L Lo

Last Name:

First Name:

Lecture Section:

Lecturer: Reid

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,
and read the instructions below carefully.)

# 1: / 10
#2:_ |/ b
This final examination consists of 10 questions on 18 pages (in- # 3: / 13
cluding this one), When you receive the signal to start, please make
sure that your copy of the examination is complete. Answer each #a____ /9
question directly on the examination paper, in the space provided. 4 5: /8
Be aware that concise, well thought-out answers will be rewarded o
over long rambling ones. Also, unreadable answers will be given zero # 6: / 14
so write legibly.
You do not need to include header files or do error checking in C #__ /14
programs except where specifically mentioned in a question or where 4 8: / 9

required for the correct execution of the program. The last two pages
of this exam contain a list of C function prototypes structs, and some # 09 / 8

Perl and Bourne shell details.
# 10: / 10

TOTAL: /100

Page 1 of 18 CONT’D...



CSC 209H1 F Final Examination December 2002

Question 1. [10 MARKS]

Circle the correct answer for the following questions:

TRUE FALSE When getopt is used to read in options, it allows the options to
appear in any order.
If a pointer is written through a pipe to a child process, it can be

TRUE FALSE .
used to access memory in the parent process.

To satsify the three properties for a correct solution to the critical
section problem, we require atomic hardware instructions.

TRUE FALSE

TRUE FALSE If tli)e. parent’s process id of a process is 1, the process must be a
zombie.

If T don’t have read permissions on a shell script then I cannot execute

TRUE FALSE the shell script.

TRUE FALSE The §tat function gets most of the information it returns from a
file’s inode.

The stat function will return an error if it is given a directory name

TRUE FALSE as an argument rather than a regular file.

Shared libraries can reduce total memory usage if multiple processes

TRUE FALSE use the same library.

TRUE FALSE A client can c:ommumcate with multiple servers through a single
socket connection.

If a process contains the code sequence fork(); fork(); fork(Q);,

TRUE  FALSE  fter there will be 4 processes.

Question 2. [5 MARKS]

Given the string below, write the value of $1 when each of the following Perl patterns is applied to the
string. Write “no match” if the string does not match the pattern.

6:16pm up 5 days, 23:26, 6 users, load average: 0.37, 0.20, 0.1

/(I\d:,.1+)/

/(\w+)$/

/ (\w+:\s*\d+\.\d+)/

/((\@+\.\d+,\s*){1,3})/

/\s+(\d+\s+\w+)\s+/

Page 2 of 18 CONT’D...



December 2002 Final Examination CSC 209H1 F

Question 3. [13 MARKS]
Part (a) [2 MARKS]

How does creating additional processes allow a server to support multiple socket connections reliably?
What problem can be solved by having the extra processes?

Part (b) [2 MARKS]
What is the main drawback of the approach to supporting multiple connections described in part (a)?

Part (c) [2 MARKS]

How does select allow a server to support multiple socket connections reliably?

Part (d) [2 MARKS]

Explain how a process knows or can find out the process id of its child.

Page 3 of 18 CONT’D...



CSC 209H1 F Final Examination December 2002

Part (e) [2 MARKS]

Write two different system calls that would cause a process to terminate. If there are arguments to the
system call that are required to make a process terminate, state what the values of the arguments must
be.

(The system calls should be truly different, not just variations on the same operation. E.g., fopen and
open are too similar, and neither should appear in your answer)

Part (f) [3 MARKS]

Write three different system calls that would cause a process to block. If there are arguments to the system
call that are required to make a process block, state what the values of the arguments must be.

(The system calls should be truly different, not just variations on the same operation. E.g., fopen and
open are too similar, and neither should appear in your answer.)

Question 4. [9 MARKS]
Part (a) [4 MARKS]

Assume the contents of the current working directory are

pl p2 x y z

where p1l is an executable program that prints to standard output its first command line argument. If the
following Bourne shell commands are executed, what is printed? (¢ is a backquote and ’ is a single quote.)

a=||p*n
b="7"

c=‘%a‘
d=$b’

echo $a

echo $b

echo $c

echo $d

Page 4 of 18 CONT’D...



December 2002 Final Examination CSC 209H1 F

Part (b) [5 MARKS]

Assume we have a program psieve that takes two arguments: -n <number of primes> and -n <output
file name>. Write a Bourne shell program that uses a loop to run psieve with the following arguments
to -n: 5, 16, 40, 1000. The output file names should be “out.<n>” where n is the argument to -n. For
example with a value of 2 for n, I would run psieve -n 2 -f out.2.

At the end of each iteration of the loop either make sure that all of the psieve processes have terminated
or print a message if there are any psieve processes running. (Assume the script will only run on Linux
machines.)

Page 5 of 18 CONT’D...



CSC 209H1 F

Question 5.

Write a Perl program that reads from standard input a list with the format given below (modified output
from ps). Your program will report the number of instances of every program that is not being run by
root. The program being run is that last field of each line. (There may be other program names than

those shown in the example input.)
Example input:

root
g2mmmm
g2mmmm
reid
reid
g2mmmm
root

28533
28536
285561
28567
28568
28557
28565

[8 MARKS]

?

pts/5
pts/7
?
pts/0
pts/7
?

N N v wn L2

22:
22:
22:
22:
22:
22:
22:

Final Examination

29
29
30
35
35
30
35

O OO O O OO

:00
:00
:00
:00
:00
:00
:00

/local/sbin/sshd
-tcsh
-tcsh
/local/sbin/sshd
-tcsh
nedit
/local/sbin/sshd

The above input would lead to the following output:

nedit

/local/sbin/sshd

-tcsh

Page 6 of 18

December 2002

CONT’'D...



December 2002 Final Examination CSC 209H1 F

Question 6. [14 MARKS]

To answer parts of this question you will find useful the wrapper functions for semaphores that we defined
in class: initSemaphore, acquire, release, removeSemaphore.

Below is a C function that implements the Dining Philosopher algorithm, where k is the id or number
of philosopher and c_left and c_right represent the chopsticks for the kth philosopher. Assume that
MAXTURNS is defined, and that getrand() returns an appropriately-sized random number.

void philosopher(int k, int c_left, int c_right) {
int i;
for(i = 0; i < MAXTURNS; i++) {

pickup(c_left);

pickup(c_right);

printf("%d is eating\n", k); sleep(getrand());
putdown(c_left);

putdown(c_right);

printf(")d is thinking\n", k); sleep(getrand());
}
exit (0);
}

Part (a) [l MARK]

The operations pickup and putdown must be to ensure only one philosopher thinks
it has a chopstick.

Part (b) [2 MARKS]

We can implement pickup and putdown by using chopstick as a semaphore variable. Complete the two
functions below.

void pickup(int chopstick) {

void putdown(int chopstick) {

Page 7 of 18 CONT’D...



CSC 209H1 F Final Examination December 2002

Part (c) [7 MARKS]

Complete main below so that a separate process is created for each philosopher, and the appropriate
semaphore or semaphores are initialized.

Part (d) [4 MARKS]

One solution to the dining philosophers problem when there are N philosophers is to ensure that only
N-1 philosophers can pick up the first chopstick. Add the semaphore initialization and function calls to
philosopher and main above to implement this solution. The semaphore operations should be placed so
as to ensure the semaphore is held for the minimum possible amount of time, and deadlock is prevented.
Hint: you either need to declare one global variable or add a parameter to philosopher.

Mark each line you add to main as part of the solution to this question with a *.

Page 8 of 18 CONT’D...



December 2002 Final Examination CSC 209H1 F

Question 7. [14 MARKS]

Part (a) [8 MARKS]

Write a program whose main purpose is to call the function doSomethingUseful(). The function takes
no arguments and the return type is void. When the program receives the SIGTERM signal the first time,
it should print to standard output “Please don’t kill me”. When the program receives the SIGTERM signal
the second time, it should print the message “I don’t want to die” and terminate. You are not allowed to
use global variables. You may need to write additional functions.

Page 9 of 18 CONT’D...



CSC 209H1 F Final Examination December 2002

Part (b) [6 MARKS]

Complete the following program, so that it tries to terminate the program exec’d by the child with SIGTERM.
After 3 seconds it checks to see if the process terminated. If not, it uses a signal that cannot be caught to
terminate the process.

int main(int argc, char *argv[]) {
int pid;

if((pid = fork()) == 0) {
execv(argv([1], &argv[i]);
perror("exec failed");

}

Page 10 of 18 CONT’D...



December 2002

Question 8.

The three programs below all compile, but they all have runtime errors. You should assume that the
appropriate headers are included. You should assume that no external forces cause the errors. l.e., only
consider errors that result from the program itself.

For each program, explain precisely what the error is, and how it could be fixed. Vague answers will

[9 MARKS]

not receive full marks.

Final Examination

A:

B:

int main(){

}

int fd[2];
char xbuf; int i;

pipe(£fd);
if(fork() == 0) {
close(fd[1]);

for(i = 0; i < 20; i++) {
read(fd[0], buf, 30);
printf ("%s\n", buf);

}

close(£fd[0]);

} else {

close(£d[0]);

buf = "a";

for(i = 0; i < 20; i++)

write(fd[1], buf, strlen(buf));

close(fd[1]);
}
wait (NULL) ;

int main(){

3

int fd[2];
int i = 10, x = 20;

pipe(£fd);
if(fork() == 0) {
close(fd[1]1);

for(i = 0; i < 3; i++) {
read (fd[0], &x, sizeof(int));
printf ("%d\n", i);

}

close(£d[0]);

} else {

close(£d[0]);

for(i = 0; i < 10; i++) {
write(fd[1], &i, sizeof(int));

sleep(1);
}
close(£fd[0]);
}
wait (NULL) ;

Answer for A

Answer for B

Page 11 of 18

CSC 209H1 F

CONT’'D...



CSC 209H1 F

Final Examination

December 2002

C:

Answer for C:

int main(){

int fd[2];
int i = 10;

pipe(fd);
if(fork() == 0) {
close(fd[1]);
while(read(£fd[0], &i,
printf ("/%d\n", 1i);
} else {
close(£d[0]);
for(i = 0; i < 5; i++)

}
wait (NULL) ;

write(fd[1], &i, sizeof(int));

sizeof (int)) !'= 0)

Page 12 of 18

CONT’'D...



December 2002 Final Examination CSC 209H1 F

Question 9. [8 MARKS]
Part (a) [6 MARKS]

Print the output of the following program. Assume the program runs to completion and no errors occur.

int main() {
int fd[2];
int x = 11; int y = 22; int z = 33;

pipe(fd);

if(fork() > 0) {
z =T7;
read(£fd[0], &y, sizeof(int));
printf("Parent: x is %d, y is %#d\n", x, y);

} else {
x = bb;
write(fd[1], &x, sizeof(int));
printf("Child: x is %d, y is %d\n", x, y);

}

printf("Done: z is %d\n", z);

Part (b) [2 MARKS]

Is there another valid ordering of the output?
YES NO

If yes, give another valid ordering. If no, explain why.

Page 13 of 18 CONT’D...



CSC 209H1 F Final Examination December 2002

Question 10. [10 MARKS]

Complete the server program below that establishes a connection with one client at a time. It reads a
name from the client and then sends a message greeting the client and telling it what its client number is.
The number assigned to each client is simply the order in which they make their connection to the server.

For example, if “Joe” was the 3rd client to connect to the server he would receive the following message
from the server: “Hi Joe. You are client 3”.

int main()

{

struct sockaddr_in self;

self.sin_family = AF_INET;
self.sin_port = htons (SERVER_PORT) ;
self.sin_addr.s_addr = INADDR_ANY;
bzero(&(self.sin_zero), 8);

Page 14 of 18 CONT’D...



December 2002 Final Examination CSC 209H1 F

(This page left blank for extra work.)

Page 15 of 18 CONT’D...



CSC 209H1 F Final Examination December 2002

(This page left blank for extra work.)

Page 16 of 18 CONT’D...



December 2002 Final Examination CSC 209H1 F

C function prototypes and structs:

int accept(int sock, struct sockaddr *addr, int addrlen) struct sigaction {

int bind(int sock, struct sockaddr *addr, int addrlen) void (*sa_handler) (int);
int close(int fd) sigset_t sa_mask;

int closedir(DIR *dir); int sa_flags; /*0x/

int connect(int sock, struct sockaddr *addr, int addrlen) }

int dup2(int oldfd, int newfd)

int execlp(const char *file, char *argv0O, ..., (char *)0)

int execvp(const char *file, char *argvl[])
int fclose(FILE *stream)

int FD_ISSET(int fd, fd_set *fds) struct sockaddr_in {

void FD_SET(int fd, fd_set *fds) sa_family t sin family;

void FD_CLR(int fd, fd_set *fds) struct in_addr sin_addr;

void FD_ZERO(fd_set *fds) unsigned char pad[8]; /*Unused*/
char *fgets(char *s, int n, FILE *stream) }

int fileno(FILE *stream)

pid-t fork(void)

FILE xfopen(const char *file, const char *mode)

int fprintf(FILE *stream, const char *format, ...)

struct hostent *gethostbyname(const char *name) struct hostent {

unsigned long int htonl(unsigned long int hostlong) ;

unsigned short int htons(unsigned short int hostshort);

int kill(int pid, int signo) char *h name; /* official name */
int listen(int sock, int n) char **h_aliases; /* alias list */
unsigned long int ntohl(unsigned long int netlong);

unsigned short int ntohs(unsigned short int netshort);

int open(const char *path, int oflag) int h_addrtype; /* host address type */
DIR *opendir(const char *name); int h_length; /* length of address */
int pclose(FILE *stream) char *h addr; /*address*/

int pipe(int filedes[2]) }

FILE *popen(char *cmdstr, char *mode)
struct dirent *readdir(DIR *dir);
ssize_t Readline(int filedes, void *buf, size_t maxlen);
ssize t Readn(int filedes, void *buf, size_t nbytes);
int select(int maxfdpl, fd set *readfds, fd set *writefds, fd set *exceptfds, struct timeval *timeout)
int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
int sigaddset(sigset t *set, int signum);
int sigemptyset(sigset_t *set);
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
/*how has the value SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK */
unsigned int sleep(unsigned int seconds);
int socket(int family, int type, int protocol)
int sprintf(char *s, const char *format, ...)
int stat(const char *file name, struct stat *buf);
char *strncat(char *dest, const char *src, size_t n);
int strncmp(const char *sl1l, const char *s2, sizet n);
char *strncpy(char *dest, const char *src, size t n);
int wait(int *status)
int waitpid(int pid, int *stat, int options) /* options = O or WNOHANG*/
void Writen(int filedes, const void *buf, size_t nbytes);

WIFEXITED(status) WEXITSTATUS (status)
WIFSIGNALED (status) WTERMSIG(status)
WIFSTOPPED (status) WSTOPSIG(status)

Page 17 of 18 CONT’D...



CSC 209H1 F

Final Examination

Shell and Perl comparison operators

| Shell | Perl Description
-d filename -d filename Exists as a directory
-f filename -f filename Exists as a regular file.
-r filename -r filename Exists as a readable file
-w filename -w filename Exists as a writable file.
-x filename -x filename Exists as an executable file.
-z string string eq "" True if empty string
strl = str2 strl eq str2 True if strl equals str2
strl != str2 strl ne str2 True if strl not equal to str2
intl -eq int2 intl == int2 True if intl equals int2
-ne, -gt, -1t, -le | '=, >, >=, <, <= For numbers
1=, >, >=, K, <= ne, gt, 1lt, le For strings
-a, -o &&, || And, or.

Perl functions:
push (ARRAY, LIST)

pop(ARRAY) -- returns LIST

sort BLOCK LIST —-- returns LIST
defined (SCALAR) -- returns true if SCALAR is defined, false otherwise
split (/PATTERN/, SCALAR) - returns LIST
open (FILEHANDLE, EXPR) -- return true if filename given by EXPR is opened

Meta characters that need to be escaped are \ | () [ { . $ "~ 7 +

Perl pattern matching:

\s = [ \t\n\r\f]
\w = [a-zA-A0-9_]
\d = [0-9]

]

[~]

+

*

?

space
word
digit

one character of a set
any expect one of the set

one or more
Zero or more
Zero or one
any character

Perl Special variables

December 2002

e_ arguments to a subroutine

$_ the default scalar variable
$. the current input line number
$0 program name

$$ process id

$! last system call error

Q@ARGV | command line arguments

Page 18 of 18

END OF EXAMINATION



