
CSC209F-99 Midterm, October 26th, 1999 Page 1 of 1

CSC209F Midterm (L0101)

Fall 1999

University of Toronto

Department of Computer Science

Date: October 26, 1999
Time: 1:10 pm
Duration: 50 minutes

Notes:
1. This is a closed book test, no aids are allowed.
2. Print your name, student number, and cdf username in the space provided below.
3. There are a total of 40 marks.
4. All shell questions assume csh.
5. This test is worth 20% of your final course mark.
6. This test comprises 6 pages. Do not detach pages, and answer questions in the blank

spaces provided. If you need more space, answer on the back of the pages (clearly
identify which question in this case).

7. Read all questions before starting. Not all questions are worth the same number
of marks, so budget your time accordingly. Answer questions in any order you
desire.

Name:
Student Number: MARKING SCHEME

CDF Username:

Marks:

Q1 /10
Q2 /8
Q3 /10
Q4 /12

Total

CSC209F-99 Midterm, October 26th, 1999 Page 2 of 2

Q1: [10 marks] (1 mark each unless otherwise indicated)

1. (3 marks) What are the legal return values for fork(). Explain (briefly) what each
one means.

-1 : fork() unable to successfully create new process
0 : normal return as seen by child
PID > 0 : normal return as seen by parent

2. Show how to store the output from the command ls -l in a shell variable.

set x = `ls -l`

3. What is the difference between a program and a process?

A program is an executable file (script or binary) stored in the filesystem, whereas a
process is an executing instance of a program.

4. What is the difference between an absolute and a relative pathname?

An absolute path name starts with a '/', whereas a relative path name does not.

5. Show how to use I/O re-direction to append the output from ls to the file 'myData'.

ls >> myData

6. How can you overide aliasing on a one-time only basis. (E.g. "rm -i" is aliased to
"rm", and you wish to execute "rm" without the "-i" option.)

Place '\' in front of the command, e.g. "\rm".

7. What is the difference between a local shell variable and an environment variable.

A local shell variable is not passed to exec()'d processes, whereas environment
variables are.

CSC209F-99 Midterm, October 26th, 1999 Page 3 of 3

Q2: [8 marks]

Write a csh shell script to compute the total size of all non-directory files in a directory.
The script takes one (optional) parameter, the name of the directory for which the total is
to be computed. If no parameter is supplied, the total is computed for the current
working directory.

#!/usr/bin/csh -f # 1 mark for correct header (-f optional)

if ($#argv > 1) then
 echo Usage: $0 <directory>
 exit 1
end if

if ($#argv == 1) then # 1 mark for dealing with parameter
 set dir = $argv[1]
else
 set dir = "."
end if

2 marks for call to ls
set dirInfo = "`ls -alF $dir | grep -v /`"
shift dirInfo # gets rid of header line from ls data

set total = 0
while ($#dirInfo) # 2 marks for loop of some sort
 set temp = ($dirInfo[1])
 @ total = $total + $temp[4] # 1 mark for doing sum
 shift dirInfo
end

1 mark for output of result
echo Total \(non-directory\) bytes in $dir is $total

There are different ways to do this. For example, you could pass thr output from grep to
get the size field only in dirInfo, and just do the sum that way. I don't care which field
is extracted from the "ls -l" data, so long as the idea of extracting some field is
present. Also, most will not have used the "`…`" technique to assign whole lines to each
array index.

CSC209F-99 Midterm, October 26th, 1999 Page 4 of 4

Q3: [10 marks]

Write a C program named numDirs.c to count the number of subdirectories within a
given directory. The program takes one optional parameter, the name of the directory for
which subdirectories are to be counted. If the parameter is not specified, the
subdirectories in the current working directory are counted. The program should ignore
"." and ".." while doing its count. Your solution must check the return status of all system
calls for errors.

#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 char *dirName ;
 DIR *dir ; /* 1 mark for declaration */
 struct dirent *dirData ; /* 1 mark for declaration */

 if (argc > 2){
 fprintf(stderr, "Usage: %s <directory>", argv[0]);
 exit(1);
 }

 if (argc == 2) dirName = argv[1] ; /* 1 mark for arg processing */
 else dirName = "." ;

 if (dir = opendir(dirName)){ /* 2 marks for opendir() */
 long count = 0 ;
 struct stat buf ;
 while (dirData = readdir(dir)) /* 2 marks for readdir() */
 {
 char filePath[256]; /* let's assume 256 is enough */
 strcpy(filePath, dirName);
 strcat(filePath, "/");
 strcat(filePath, dirData->d_name);
 if (stat(filePath, &buf) != -1) /* 1 mark for stat()/lstat() */
 /* 1 mark for S_ISDIR(), plus calculation */
 { if (S_ISDIR(buf.st_mode)){ count ++ ; }
 else
 fprintf(stderr,"Unable to stat() %s!\n", filePath);
 }
 closedir(dir); /* 1 mark for closedir() */
 printf("Total size = %ld files.\n", count);
 } else {
 fprintf(stderr,"Unable to open %s!", dirName);
 exit(1);
 }
 return 0 ;
}
Subtract 2 marks for failing to check return values. I don't think there are many different ways to do this.
This solution ignores symbolic links for simplicity's sake.

You did not need to specify include
files, as stated in class.

CSC209F-99 Midterm, October 26th, 1999 Page 5 of 5

Q4: [12 marks]

Write the following C program:

runSafe <progSafe> <prog> [<arg1> [<arg2> … [<argN>] …]]

runSafe creates a child process and uses it to execute <prog> with any arguments
following <prog> on the command line. If <prog> terminates normally with status
code = 0, then runSafe is finished. If <prog> terminates normally with status code ≠
0, then runSafe executes <progSafe> and reports on its termination status. If
<prog> terminates abnormally or fails to run at all, runSafe reports this but does not
run <progSafe>. In your solution, you must check the return status of all system calls
for errors. It is assumed <prog> may reside anywhere in the search path.

#include <wait.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 int result, status ;
 if (argc < 3){
 fprintf(stderr,"Usage: %s <progSafe> <prog> {<args>}", argv[0]);
 exit(1);
 }

 switch (fork()) /* 2 marks - create child */
 { case -1: /* error */ /* 1 marks - deal with error */
 fprintf(stderr,"Error: %s: unable to create new process!\n", argv[0]);
 exit(1);
 case 0: /* child */
 execvp(argv[2], argv + 2); /* 1 marks - correct call to execvp() */
 exit(1); /* must have this, in case exec() fails *//* 1 mark - handle exec error */
 default:
 result = wait(&status); /* 1 marks - wait for child */
 if (result == -1){ /* 1 mark - check for error in wait() */
 perror("Error while waiting for child! ");
 exit(1);
 }
 if (WIFEXITED(status)){ /* 1 marks - check status returned by child */
 printf("%s exited with code %d\n", argv[2], WEXITSTATUS(status));
 if (WEXITSTATUS(status)) { /* error */
 switch (fork())/* 2 marks - create child */
 { case -1:
 perror("Unable to create process for <progSafe>\n");
 exit(1);
 case 0: /* child */
 execlp(argv[1], argv[1], (char *)0); /* 1 mark - call to execlp() */
 exit(1); /* 1 mark - handle execlp() failure */
 default:
 result = wait(&status); /* 1 mark - wait for child */
 if (result == -1){ /* 1 mark - check for error in wait() */
 perror("Error waiting for <progSafe>\n");
 exit(1);
 } else {
 if (WIFEXITED(status)) /* 1 mark - check return status */
 printf("%s exited with status = %d\n", argv[1], WEXITSTATUS(status));
 else
 printf("%s exited abnormally\n", argv[1]);
 }
 }
 } else printf("%s exited with status = 0\n", argv[2]);
 } else {

CSC209F-99 Midterm, October 26th, 1999 Page 6 of 6

 fprintf(stderr,"%s exited abnormally!\n", argv[2]);
 exit(0);
 }
 }
}

This could be done in different ways, for example you might use if-else instead of
switch when invoking fork(). Given the way in which command line parameters
are set up, it is pretty much necessary to use execvp() to handle the execution of
<prog> (allows for easy use of existing command line parameters), and execlp() for
the execution of <progSafe> since we must pass at least one parameter, arg[0]. The
"p" versions of execl/v are used since we want the system to search the path for us
automatically.
It should be noted that the example shown here is complete and tested: you did not need
something this complete to get full marks. As stated in class, you did not need to list any
of the include files.

CSC209F-99 Midterm, October 26th, 1999 Aid Sheet

Macros & Function Prototypes

I/O
char *fgets(char *s, int n, FILE *stream)
FILE *fopen(const char *file, const char *mode)
int close(int fd)
int fclose(FILE *stream)
int fflush(FILE *stream)
int fileno(FILE *stream)
int fprintf(FILE *stream, const char *format, …)
int fscanf(FILE *stream, const char *format, …)
int listen(int soc, int n)
int open(const char *path, int oflag)
int sprintf(char *s, const char *format, …)
int write(int fd, void *buf, int nbyte)
ssize_t read(int fd, void *buf, size_t nbyte)

Process Management
int execl(const char *path, char *argv0, …, (char *)0)
int execle(const char *path, char *argv0, …, (char *)0, const char *envp[])
int execlp(const char *file, char *argv0, …, (char *)0)
int execv(const char *path, char *argv[])
int execve(const char *path, char *argv[], const char *envp[])
int execvp(const char *file, char *argv[])
int wait(int &status)
int waitpid(int pid, int *stat, int options)
int WIFEXITED(int status)
int WIFSTOPPED(int status)
int WIFSIGNALLED(int status)
int WEXITSTATUS(status)
int WTERMSIG(int status)
int WSTOPSIG(int status)
pid_t fork(void)

String Handling
char *strtok(char *s, const char *delim)
char *strcpy(char *dest, const char *srce)
char *strncpy(char *dest, const char *srce, int count)
int strlen(const char *s)
int strcmp(const char *s1, const char *s2)
int strncmp(const char *s1, const char *s2, int count)

Directory Structure
DIR *opendir(const char *filename);
int closedir(DIR *dirp);
int lstat(const char *path, struct stat *buf);
int S_ISDIR(mode);
int stat(const char *path, struct stat *buf);
long telldir(DIR *dirp);
struct dirent *readdir(DIR *dirp);
void rewinddir(DIR *dirp);
void seekdir(DIR *dirp, long loc);

struct stat {
 mode_t st_mode; /* File mode (see mknod(2)) */
 time_t st_atime; /* Time of last access */
 time_t st_mtime; /* Time of last data modification */
 time_t st_ctime; /* Time of last file status change */
 off_t st_size; /* File size in bytes */
 nlink_t st_nlink; /* Number of links */
 uid_t st_uid; /* User ID of the file's owner */
 gid_t st_gid; /* Group ID of the file's group */
};

Struct dirent {
 ino_t d_ino;
 off_t d_off;
 unsigned short d_reclen;
 char d_name[1];
}

