
CSC 209H1 S Evening Section Midterm — Solutions Winter 2008

Question 1. [6 marks]

All parts of this question assume the following C statement. Parts (b) through (e) assume a variable called
ptrs.

char data[256] = "Hop Pop We like to hop.";

Part (a) [1 mark] Is the following statement allowed? Why or why not?

data[0] = ’P’;

Part (b) [1 mark]

We want to use a variable ptrs to point to the first character of each word in data. Fill in the argument to
malloc so that enough memory is allocated to store a pointer to the first character of each word in data.

char **ptrs = malloc(6 * sizeof(char*));

Part (c) [1 mark]

Using array notation, write a statement that makes the first element in ptrs refer to the first character of
the first word in data.

ptrs[0] = &data[0];

Part (d) [1 mark]

Using only pointer notation, write a statement that makes the second element in ptrs refer to the first
character of the second word in data without changing the value of ptrs.

*(ptrs+1) = data + 4;

Part (e) [2 marks] Write two C statements so that the following statements prints “like”.

ptrs[0] = &data[11];
data[15] = ’\0’;

printf("%s\n", *ptrs);

Page 1 of 6 cont’d. . .

CSC 209H1 S Evening Section Midterm — Solutions Winter 2008

Question 2. [6 marks]

Write a shell program that takes a path to a directory as command-line argument, and prints to standard
output the sum of the sizes of the regular files in the directory. It counts only the sizes of files and not
directories or other special devices.

Use the command du to get the size of a file. For example, assuming the current working directory contains
a file called test.pdf, du test.pdf prints to standard output the line

185 test.pdf

(There are other options to du that will do almost what this question asks. You must not use them.)

total=0

for file in $1/*
do

if [-f $file]
then

size=‘du $file | cut -f 1‘
echo $size
total=‘expr $total + $size‘

fi
done
echo $total

Page 2 of 6 cont’d. . .

CSC 209H1 S Evening Section Midterm — Solutions Winter 2008

Question 3. [3 marks]

In assignment 1, the entire metadata array was read from the file and written to the file. Another possibility
would have been to read or write just one element of the array.

Write a snippet of C code that reads the 4th Fnode from the open FILE pointer fp. You will need to
declare the appropriate variable to store the data that is read from the file. Assume the current position
of the file is the first byte of the file, and that the data exists in the file. No error handling is required.

Recall that the Fnode struct was defined as follows:

typedef struct file_metadata {
char name[MAXNAME];
int offset;
int length;

} Fnode;

Fnode f;
fseek(fp, 4*sizeof(Fnode), SEEK_SET);
fread(&f, sizeof(Fnode), fp);

Page 3 of 6 cont’d. . .

CSC 209H1 S Evening Section Midterm — Solutions Winter 2008

Question 4. [6 marks]

Part (a) [5 marks]

The current working directory contains two files shown below with their contents.

cmd1

wc -w

cmd2

*1

Recall that wc -w FILE prints the number of words in FILE followed by name of FILE.

Two variables are defined below. For each of the following lines, give the output that would appear when
the command is run. (‘ is a backquote and ’ is a forward quote)

x="cat"
y=’cat cmd1 cmd2’

echo $x * => cat cmd1 cmd2

echo "$x *" => cat *

echo ‘$x *‘ => wc -w cmd1

echo ’$y’ => $y

echo ‘$y‘ => wc -w cmd1

Part (b) [1 mark]

What are the minimum permissions needed on cmd1 and cmd2 for all of the commands in part (a) to run
without permission errors.

Read permissions.

Page 4 of 6 cont’d. . .

CSC 209H1 S Evening Section Midterm — Solutions Winter 2008

Question 5. [7 marks]

Part (a) [6 marks]

Complete the C function below that takes the string line as an argument and removes the html tags from
the line. It returns a pointer to the beginning of the string.

An html tag is defined as all characters that lie between < and > including the < and > symbols themselves.
You may assume well-formed data. In other words, there will be a closing > for every <.

The function must make the changes to the string in place. You may not declare another array of
characters or use malloc.

char *remove_tags(char* line) {

int r = 0;
int s = 0;
int in_tag = 0;
while(line[s] != ’\0’) {

if(in_tag) {
if(line[s] == ’>’) {

in_tag = 0;
}
s++;

} else {
if(line[s] == ’<’) {

in_tag = 1;
s++;

} else {
line[r] = line[s];
r++;
s++;

}
}

}
line[r] = ’\0’;
return line;

}

Part (b) [1 mark] If the function above did not return a pointer to the resulting string, would the
changes to the string be visible to the function that called remove tags? Explain briefly.

x

Page 5 of 6 cont’d. . .

CSC 209H1 S Evening Section Midterm — Solutions Winter 2008

C function prototypes and structs:

int fclose(FILE *stream)
char *fgets(char *s, int n, FILE *stream)
FILE *fopen(const char *file, const char *mode)
size t fread(void *ptr, size t size, size t nmemb, FILE *stream);
int fseek(FILE *stream, long offset, int whence)
size t fwrite(const void *ptr, size t size, size t nmemb, FILE *stream);
char *index(const char *s, int c)
DIR *opendir(const char *name)
void perror(const char *s)
struct dirent *readdir(DIR *dir)
unsigned int sleep(unsigned int seconds)
int sprintf(char *s, const char *format, ...)
int stat(const char *file name, struct stat *buf)
char *strchr(const char *s, int c)
size t strlen(const char *s)
char *strncat(char *dest, const char *src, size t n)
int strncmp(const char *s1, const char *s2, size t n)
char *strncpy(char *dest, const char *src, size t n)
char *strrchr(const char *s, int c)
char *strstr(const char *haystack, const char *needle)

Useful structs
struct stat { /*NOTE: only fields that might be needed are included */

mode t st mode; /* inode protection mode */
uid t st uid; /* user-id of owner */
gid t st gid; /* group-id of owner */
off t st size; /* file size, in bytes */

};

Shell comparison operators

Shell Description

-d filename Exists as a directory
-f filename Exists as a regular file.
-r filename Exists as a readable file
-w filename Exists as a writable file.
-x filename Exists as an executable file.
-z string True if empty string
str1 = str2 True if str1 equals str2
str1 != str2 True if str1 not equal to str2
int1 -eq int2 True if int1 equals int2

-ne, -gt, -lt, -le For numbers
!=, >, >=, <, <= For strings

-a, -o And, or.

Useful Unix programs for shell programs: cat, cut, wc, grep, sort, sort -n (for numerical sorting),
head, tail

Page 6 of 6 End of Solutions

