
CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

Duration: 50 minutes
Aids Allowed: 1 - 8.5x11 sheet

Student Number:

Last Name: SOLUTION

First Name:

TA: Instructor: Reid

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,

and read the instructions below carefully.)

This midterm test consists of 5 questions on 9 pages (including
this one). When you receive the signal to start, please make sure
that your copy of the test is complete. Extra space was left for each
of the programming questions. Please indicate clearly the part of
your work that should be marked.

IMPORTANT: You do not need to include the “#!” line in Bourne
shell programs you are asked to write. In C programs, you do not
need to add “#include” lines, or do error checking unless the question
requires it, or the program would not function correctly given valid
input without error checking.

Marking Guide

1: / 6

2: / 6

3: / 5

4: / 6

5: / 8

TOTAL: /31

Good Luck!

Total Pages = 9 Page 1 cont’d. . .

CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

Question 1. [6 marks]

Part (a) [3 marks]

Suppose the current working directory contains the following two directories:

d-wx-wx-wx me d1
drw-rw-rw- me d2

and the permissions on the files in those directories are as follows:

-rwxr-xr-x me d1/xfile
-rwxr-xr-x me d2/yfile

Circle the statements below that will produce an error.

ls d1 cd d1 d1/xfile

ls d2 cd d2 d2/yfile

Part (b) [2 marks]

Write 2 lines of C code that would result in a memory leak.

char *s = malloc(10);
s = ’’Hello’’;

Part (c) [1 mark]

Rewrite your example in part c, fixing the error but using exactly the same variable(s).

char *s;
s = ‘‘Hello’’;

Page 2 of 9 cont’d. . .

CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

Question 2. [6 marks]

Suppose you have a program called concat that

• reads from standard input

• concatenates all of the lines you read into one long string

• prints that string to standard output

• returns the number of lines it read.

Part (a) [3 marks]

Write a shell program that uses concat to print the number of lines in the file testfile. The program
should not print anything else. (Do not use any other program to determine the number of lines in
testfile.)

concat < testfile > /dev/null 2>&1
echo $?

Part (b) [3 marks]

Suppose the file filelist contains a list of file names. Write a single shell command that uses concat
and makes one call to grep so that it searches for the word “penguin” in the the files given in filelist.

grep penguin ‘concat < filelist‘

Page 3 of 9 cont’d. . .

CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

Question 3. [5 marks]

A web administrator wants to make sure that the files on the site are not writable. Write a shell program
called iswritable that prints out the absolute path (including the file name) of each writable file in and
below the current working directory.

#!/bin/sh

for file in *
do

if [-d $file]
then

cd $file
iswritable
cd ..

else
if [-w $file]
then

echo $PWD/$file
fi

fi
done

Page 4 of 9 cont’d. . .

CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

Question 4. [6 marks]

Write a C function that takes a string as an argument, and prints each word of the string on a separate
line. Two words are separated by one or more spaces. Your function may modify the string that is passed
in, but it may not allocate any more memory for strings, and you may not print one character at a time.

void splitprint(char *str)
{

char *startptr = str;
char *endptr;

while((endptr = strchr(startptr, ’ ’)) != NULL) {
*endptr = ’\0’;
printf("%s\n", startptr);
endptr++;
startptr = endptr;
while(*startptr == ’ ’) {

startptr++;
}

}
printf("%s\n", startptr);

}

Using strtok is okay even though that makes the question pretty simple.

Page 5 of 9 cont’d. . .

CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

Question 5. [8 marks]

Complete the following C program to validate an archive file from assignment 2. The program takes an
archive file as a command line argument, and prints an error message for each file in the archive that does
not appear in the current working directory. It will also print an error message if the size of the file differs
from the metadata information stored in the archive file.

Assume you are given the following function. Do not implement readMetadata

/* The readMetadata function takes two argument: a file pointer to the archive file and a
* pointer to an array of record structs as its second. It reads the metadata from the
* archive and stores the information in the array of structs. The function returns the
* number of lines of metadata that it read.
*/
int readMetadata(FILE *fp, struct record *md);

struct record {
char *name;
int size;
mode_t mode;

};

int
main(int argc, char **argv)
{

struct record metadata[MAXFILES];

int i;
int numfiles = 0;
struct stat sbuf;
FILE *infp;

if(argc != 2) {
fprintf(stderr, "Usage: unarchive <filename>\n");
exit(1);

}

if((infp = fopen(argv[1], "r")) == NULL) {
fprintf(stderr, "Could not open %s. Terminating.\n", argv[1]);
exit(1);

}

numfiles = readMetadata(infp, metadata);
fclose();

for(i = 0; i < numfiles; i++) {
if(stat(metadata[i].name, &sbuf) == -1) {

printf("Error: %s not found\n", metadata[i].name);
} else {

Page 6 of 9 cont’d. . .

CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

if(sbuf.st_size != metadata[i].size) {
printf("Error: %s is %d but the metatdata reports it as %d\n",

metadata[i].name, (int)sbuf.st_size, metadata[i].size);
}

}
}
return 0;

}

Page 7 of 9 cont’d. . .

CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

(This page intentionally left blank)

Page 8 of 9 cont’d. . .

CSC 209H1S Evening Section Midterm Test — Solutions Winter 2005

C functions for strings:
char *index(const char *s, int c);
char *strncat(char *dest, const char *src, size t n);
char *strchr(const char *s, int c);
size t strlen(const char *s);
int strncmp(const char *s1, const char *s2, size t n);
char *strncpy(char *dest, const char *src, size t n);
char *strstr(const char *haystack, const char *needle);
C functions for files and directories:
int closedir(DIR *dir);
int fclose(FILE *stream);
char *fgets(char *s, int n, FILE *stream);
FILE *fopen(const char *file, const char *mode);
int fprintf(FILE *stream, const char *format, ...);
char *getcwd(char *buf, size t size);
DIR *opendir(const char *name);
struct dirent *readdir(DIR *dir);
int stat(const char *file name, struct stat *buf);
void perror(const char *s);

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
off_t st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

};

The following POSIX macro functions are defined to check the file type
(m is the st_mode field of the stat struct):
S_ISLNK(m) is it a symbolic link?
S_ISREG(m) regular file?
S_ISDIR(m) directory?

Shell comparison operators
Shell Description

-d filename Exists as a directory
-f filename Exists as a regular file.
-r filename Exists as a readable file
-w filename Exists as a writable file.
-x filename Exists as an executable file.
-z string True if empty string
str1 = str2 True if str1 equals str2
str1 != str2 True if str1 not equal to str2
int1 -eq int2 True if int1 equals int2

-ne, -gt, -lt, -le For numbers
!=, >, >=, <, <= For strings

-a, -o And, or.

Page 9 of 9 End of Solutions

