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Mutual exclusion (ME) is used to coordinate access to shared resources by concurrent

processes. We investigate several new N -process shared-memory algorithms for variants

of ME, each of which uses only reads and writes, and is local-spin, i.e., has bounded

remote memory reference (RMR) complexity. We study these algorithms under two

different shared-memory models: the distributed shared-memory (DSM) model, and the

cache-coherent (CC) model. In particular, we present the first known algorithm for first-

come-first-served (FCFS) ME that has O(logN) RMR complexity in both the DSM and

CC models, and uses only atomic reads and writes. Our algorithm is also adaptive to

point contention, i.e., the number of processes that are simultaneously active during a

passage by some process. More precisely, the number of RMRs a process makes per

passage in our algorithm is Θ(min(c, logN)), where c is the point contention. We also

present the first known FCFS abortable ME algorithm that is local-spin and uses only

atomic reads and writes. This algorithm has O(N) RMR complexity in both the DSM

and CC models, and is in the form of a transformation from abortable ME to FCFS

abortable ME. In conjunction with other results, this transformation also yields the

first known local-spin group mutual exclusion algorithm that uses only atomic reads

and writes. Additionally, we present the first known local-spin k-exclusion algorithms

that use only atomic reads and writes and tolerate up to k − 1 crash failures. These
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algorithms have RMR complexity O(N) in both the DSM and CC models. The simplest

of these algorithms satisfies a new fairness property, called k-FCFS, that generalizes the

FCFS fairness property for ME algorithms. A modification of this algorithm satisfies the

stronger first-in-first-enabled (FIFE) fairness property. Finally, we present a modification

to the FIFE k-exclusion algorithm that works with non-atomic reads and writes. The

high-level structure of all our k-exclusion algorithms is inspired by Lamport’s famous

Bakery algorithm.
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Chapter 1

Introduction

Shared-memory multiprocessor computers have a significant speed advantage over single

processor computers, since they allow multiple processes to execute tasks concurrently.

With this speedup, however, there arise resource coordination issues that must be han-

dled. Some resources in a computer can only be accessed by one process at a time. For

example, a hardware resource such as a printer can only print one job at a time, and a

software resource such as a queue can only be modified by one process at a time. To solve

this problem, a mutual exclusion (ME) algorithm can be used to protect the resource.

An algorithm for ME consists of a trying protocol (TP) and an exit protocol (EP).

Before a process can access the shared resource (also known as the critical section (CS)),

it executes the TP, and after it finishes the CS, it executes the EP. A process that is not

in the TP, CS, or EP is said to be in the non-critical section (NCS).

A process may try accessing the CS multiple times throughout its lifetime. We illus-

trate this in Figure 1.1 using an infinite loop.

The TP and EP of a mutual exclusion algorithm must be written in such a way to

satisfy the following properties:

Mutual Exclusion: No two processes are in the CS simultaneously.

Lockout Freedom: If some process p is in the TP, then p eventually enters the CS.

1
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Figure 1.1: The execution cycle

loop

Non-Critical Section (NCS)

Trying Protocol (TP)











Doorway (DWY)

Waiting (WRM)

Critical Section (CS)

Exit Protocol (EP)

end loop

Bounded Exit: If a process p enters the EP, then p returns to the NCS in a bounded

number of its own steps.

The description of bounded exit requires that a process leaves the exit protocol “in a

bounded number of its own steps”. The idea of a process ’step’ is explained more fully

in the next chapter where we define the model, but for now it can be thought of as a

read or a write to a single shared variable. The intuition behind bounded exit is that

a process can finish the exit protocol without having to wait for other processes. More

precisely, whenever we say that a process p completes some section of code “in a bounded

number of its own steps”, we mean that there exists a function f(N), dependent only on

N , the number of processes in the system, such that p is guaranteed to have finished the

segment of code after having executed f(N) steps.

Lockout freedom is sometimes replaced with a weaker property called deadlock free-

dom:

Deadlock Freedom: If some process is in the TP, then some process eventually enters

the CS.

There are several variants of the mutual exclusion problem. We introduce below the

ones that are studied in this thesis. For each of these variants, we assume that the critical
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section is finite, i.e., after a process p takes some finite (but unbounded) number of steps

in the CS, p is guaranteed to leave the CS and start the EP. Also, with the exception

of the k-exclusion variant, we assume that every process that leaves the NCS will keep

taking steps at least until it returns to the NCS. That is, a process does not crash while

it is outside of the NCS.

1.1 FCFS ME

The properties stated in the preceding section, which are satisfied by ordinary mutual

exclusion algorithms, do not prevent situations in which a process waits inside the trying

protocol for a long time while other processes are repeatedly granted entry to the critical

section. Intuitively, this is unfair. To rectify this situation, we introduce a new property

known as the First-Come-First-Served (FCFS) property [32], which informally requires

that processes are granted entry into the CS in the order in which they leave the NCS.

To make this more precise, the trying protocol is split into two parts (see Figure 1.1):

the first part, the doorway (DWY), which a process completes in a bounded number of

its own steps; and a second part, the waiting room (WRM). FCFS is defined as follows:

FCFS: If a process p finishes executing the doorway before a process q begins executing

the doorway, then q does not enter the CS before p.

The TP and EP of an FCFS ME algorithm satisfy all of mutual exclusion, lockout

freedom, bounded exit, and FCFS.

1.2 Abortable ME

If a process enters the trying protocol, it cannot leave the trying protocol until it is granted

access to the critical section. A variant of mutual exclusion that lifts this restriction is

abortable mutual exclusion [41]. In this variant, a process can withdraw its request to
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enter the CS by executing a section of code known as the abort protocol (AP), and then

return to the NCS. A process can only withdraw its request at certain points in the

trying protocol, known as abort points. If a process leaves the trying protocol and starts

executing the abort protocol anywhere else, one or more of the correctness properties of

the ME algorithm may fail to hold.

Scott and Scherer [41] point out several applications where this functionality may be

useful, including real-time systems, in which the time spent waiting for a resource cannot

exceed a certain threshold, and database systems, which can use the functionality to

recover from suspected deadlocks.

The TP and EP of an abortable ME algorithm must satisfy the same properties as

in ordinary ME. The TP and AP must also satisfy the following property, which has two

parts:

Bounded Abort: (i) If a process is in the trying protocol and cannot enter the CS in

a bounded number of its own steps, then it can reach an abort point in a bounded

number of its own steps; and (ii) If a process starts executing the abort protocol

while at an abort point, then it returns to the NCS in a bounded number of its

own steps.

This property ensures that when a process wants to abort its attempt to enter the

CS, it can perform the abort without having to wait for other processes. Without this

property, abortability becomes a feature of little practical value: The main purpose of

abortability is to allow a process to return to the NCS if it decides that it has been

waiting too long to access the CS. If, upon deciding to abort, a process still has to wait

an unbounded amount of time, it might as well have continued to wait to enter the CS.

We also study in this thesis FCFS abortable ME. The FCFS property in this variant

of ME is modified slightly to read: If a process p finishes executing the doorway before a

process q begins executing the doorway, then q cannot enter the CS before p enters the

CS or aborts its entry attempt.
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1.3 Group ME

Group mutual exclusion [28] is similar to mutual exclusion, except that a process requests

a “session” before leaving the NCS, and processes that request the same session can

enter the CS concurrently. An algorithm for N -process group mutual exclusion (GME)

consists of a trying and exit protocol that satisfy lockout freedom and bounded exit, as

in “ordinary” mutual exclusion, plus the following properties:

Group Mutual Exclusion: No two processes requesting different sessions are in the

CS simultaneously.

Concurrent Entering: If a process p is requesting a session s, and no other process is

requesting a session s′ 6= s, then p enters the CS in a bounded number of its own

steps.

Mutual exclusion is a special case of group mutual exclusion where each process re-

quests its own ID as its session every time it leaves the NCS, with one minor difference.

In this special case, the concurrent entering property says that if a process p tries to

enter the CS while all other processes are in the NCS, then p enters the CS in a bounded

number of its own steps. Ordinary mutual exclusion does not require that this property

be satisfied,1 although all mutual exclusion algorithms of which we are aware do actually

satisfy it. To not satisfy this property, an algorithm would likely have to do something

strange such as choose a random number from an unbounded range and then wait that

number of steps before attempting to enter the CS. Adding this property to the specifi-

cation of mutual exclusion would not really make the problem any more difficult, but we

omit it so as to remain consistent with the way mutual exclusion is traditionally defined.

One use for group mutual exclusion is in a Computer Supported Cooperative Work

application, described by Joung [28]. Such an application may have an electronic white

1We are thankful to Sam Toueg for pointing out this observation.



Chapter 1. Introduction 6

board (the critical section), to which multiple users (the processes) have access. When

a user wants to share some piece of information about a certain topic (the session)

with other users, he posts that information to the white board. Users interested in the

same topic may then access that information, possibly altering it or adding their own

information. Users that are interested in a different topic, however, cannot use the white

board until the current users are finished.

Another use for group mutual exclusion is in solving the Readers-Writers (RW) prob-

lem [11]. In the RW problem, readers are allowed concurrent access to the critical section,

whereas each writer requires exclusive access. A GME algorithm can be used to solve

the RW problem by having readers request a common session (e.g., session 0), while

each writer requests a unique session (e.g., its own process ID, assuming process IDs are

greater than 0).

1.4 k-Exclusion

k-Exclusion [19] is a generalization of mutual exclusion that allows up to k processes to

be in the critical section concurrently, and can tolerate up to k − 1 process crashes in a

manner described more precisely in the starvation freedom property below. We say that

a process crashes if it stops taking steps while outside the NCS. If a process crashes we

say that it is faulty ; otherwise we say that it is non-faulty. Note that, for our purposes,

a process that stops taking steps in the NCS, i.e., a process that never attempts to enter

the CS after some point, is not considered faulty.

The TP and EP of a k-exclusion algorithm must satisfy the following properties:

k-Exclusion: At most k processes are in the CS simultaneously.

Starvation Freedom: If a non-faulty process p is in the TP and at most k − 1 other

processes crash, then p eventually enters the CS.
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A k-exclusion algorithm must additionally satisfy bounded exit, whose statement

remains unchanged from the ordinary mutual exclusion problem. Note that mutual

exclusion is a special case of k-exclusion where k = 1, except that starvation freedom is

called lockout freedom in the context of ordinary mutual exclusion.

Certain k-exclusion algorithms may satisfy a weaker liveness property than starvation

freedom, known as deadlock freedom:

Deadlock Freedom: If a non-faulty process is in the TP, and at most k − 1 other

processes crash, then some process eventually enters the CS.

An equivalent formulation of the deadlock freedom property, which we use in this

thesis, says that if a non-faulty process p is stuck in the trying protocol forever, and at

most k−1 processes crash, then some process executes an infinite number of times through

the CS. (This property should not be confused with the deadlock freedom property that

we defined for ordinary mutual exclusion. When we make subsequent references to this

property, it will be clear from the context which version we mean.)

There are also variants of k-exclusion in which the order that processes are admitted

into the CS is more fair than is guaranteed by the properties above. For ordinary mutual

exclusion, the FCFS property was used to ensure fair ordering. In the context of k-

exclusion, when k > 1, requiring that an algorithm satisfy FCFS does not make sense,

since it conflicts with the starvation freedom property: If a process p completes the

doorway and crashes before a non-faulty process q enters the doorway, then a k-exclusion

algorithm that satisfies FCFS must prevent q from ever entering the CS, thereby violating

starvation freedom. However, we can weaken the FCFS property so that it does not

conflict with starvation freedom and still provides some modicum of fairness. Our new

property is k-FCFS :

k-FCFS: For any set of processes Y such that |Y | = k, if all processes in Y finish the

doorway before a process p starts the doorway, then p does not enter the CS before
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at least one process in Y enters the CS.

A nice feature of k-FCFS is that it makes sense for all k ≥ 1. In particular, for k = 1,

it is simply the FCFS property for ordinary mutual exclusion.

Another fairness property for the k-exclusion problem, known as First-In-First-

Enabled (FIFE), was originally defined by Fischer et al. [19]. Intuitively, this property

captures the notion of fair ordering by requiring that processes become enabled to enter

the CS in the order in which they execute through the doorway. A process p is enabled to

enter the CS if it can enter the CS in a bounded number of its own steps. More precisely:

FIFE: If a process p finishes the doorway before a process q starts the doorway, and q

enters the CS before p, then p can enter the CS in a bounded number of its own

steps.

FIFE is a stronger property than k-FCFS in that any k-exclusion algorithm that

satisfies FIFE also satisfies k-FCFS. To see why this is the case, suppose, by way of

contradiction, that there is a k-exclusion algorithm that satisfies FIFE but not k-FCFS.

There exists an execution of this algorithm in which some set of processes Y , where

|Y | = k, all finish the doorway before a process p starts the doorway, and p enters the

CS before any process in Y enters the CS. By FIFE, each process in Y is able to enter

the CS in a bounded number of its own steps. Thus, the execution can proceed in such

a way that process p remains in the CS until all processes in Y enter the CS. We now

have a situation in which k+1 processes are in the CS, contradicting that the algorithm

satisfies k-exclusion.

1.5 Models and Complexity Measures

The message-passing model and the shared-memory model are two ways of modeling the

communication between processes. In the message-passing model, processes communicate
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by sending messages to each other through a “network”, and in the shared-memory model

processes communicate by reading and updating shared variables to which processes have

access. In this thesis we focus on the shared-memory model.

The shared-memory model is further divided into the following two models [4]: the

distributed shared-memory (DSM) model, and the cache-coherent (CC) model. These

models provide a more precise description of how processes access shared variables.

In the DSM model, each process has a memory module associated with it. The shared

variables used by the algorithm are partitioned among the different memory modules

before an execution begins and this partitioning remains invariant during the algorithm’s

execution. Whenever a process accesses a shared variable stored in another process’s

memory module, a remote memory reference occurs. When a process accesses a shared

variable in its own memory module, a local memory reference occurs.

In the CC model there is a “main memory”, remote to each process, that all processes

can access. Each process also has a local cache of unbounded size. Any time a process

writes a shared variable, it writes it to main memory, hence making a remote memory

reference. Whenever a process reads a shared variable, it first attempts to read a copy

of the variable from its cache. If a copy does not exist in the process’s cache, the process

will read the variable from main memory, thereby incurring a remote memory reference,

and then will cache a copy of the variable locally. A cached copy of the variable v remains

in a process p’s cache until the copy is invalidated, at which time it is effectively erased

from p’s cache. All cached copies of v are invalidated whenever any process writes v to

main memory. There are other variants of the CC model, which we describe in more

detail in Chapter 2.

A common approach for measuring the time complexity of an algorithm is to count

the worst-case number of memory references that a process can make when it executes the

algorithm. We refer to this as an algorithm’s step complexity. This approach, however,

is problematic for mutual exclusion algorithms, since a process can make an unbounded
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number of memory references if it needs to wait to enter the CS. Instead of counting all

memory references, we only count remote memory references (RMRs). More precisely, we

will measure the efficiency of mutual exclusion algorithms using RMR complexity [4]: the

maximum number of RMRs a process incurs during one passage of the algorithm, where

a passage is the time between when a process leaves the NCS and next returns to it. This

is a good measure of an ME algorithm’s efficiency, since an RMR involves traversing the

processor-to-memory interconnect, which can be much slower than accessing a variable

locally [38].

An ME algorithm that has bounded RMR complexity is typically called a local-spin

ME algorithm. The term refers to the behaviour of a process while it is waiting to enter

the CS. A process must wait to enter the CS, for example, when another process is

already in the CS. While a process waits, it executes a loop in which it checks some set of

variables repeatedly until it can advance. If the algorithm has bounded RMR complexity,

then the set of variables that the process references in the loop must be locally accessible.

In this situation, the process is said to be locally “spinning”. The algorithms that we

present in this thesis are all local-spin algorithms.

The RMR complexity of an ME algorithm may depend on the number of processes

contending for access to the CS. Point contention describes this quantity precisely; for

our purposes it is defined as the maximum number of processes simultaneously outside

of the NCS at any point during a passage. An ME algorithm whose RMR complexity

grows gradually with point contention is known as adaptive (to point contention). Point

contention is often denoted by k, however this conflicts with our use of k in k-exclusion.

Instead, we use c to denote this quantity throughout this thesis.
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1.6 Synchronization Primitives

In the shared-memory model, processes communicate by using various synchronization

primitives to read and update shared variables. The weakest form of primitives are non-

atomic reads and writes. Intuitively, if a process tries writing a variable “solo”, i.e.,

without any other processes reading or writing the same variable concurrently, then the

value written will be stored correctly in the variable. If another process tries reading (or

writing) the same variable concurrently with the write, then the value read (or written) is

arbitrary. There also exist stronger synchronization primitives such as atomic reads and

writes, in which processes can read or write shared variables atomically. The effect of an

atomic read or write on a shared variable appears to be instantaneous. More precisely,

atomic reads and writes of variables in this thesis behave the same as reads and writes

of atomic registers as defined by Lamport [34]. Non-atomic reads and writes of variables

behave similar to reads and writes of safe registers, also as defined by Lamport. Lamport,

however, only studied multi-reader single-writer safe registers, i.e., the case where there

was no possibility for concurrent writes. In this thesis, our definition of non-atomic reads

and writes is more accurately compared to what would be called multi-reader multi-writer

safe registers, although we are not aware of any formal definition of such registers in the

literature. We define the behaviour of non-atomic reads and writes more precisely in

Chapter 5.

Note that when using atomic reads and writes in a mutual exclusion algorithm, we

effectively assume that mutual exclusion has already been solved at the level of reads

and writes. That is, each time a process reads or writes a variable, the read or write

takes place within a critical section. This observation leads us to the following intriguing

question: Is it possible to solve mutual exclusion without assuming mutual exclusion

at the level of reads and writes, i.e., using non-atomic reads and writes? It turns out

that it is. We mention a couple of such algorithms in the next section where we discuss

previous work. There are also more general techniques known as register constructions
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[33, 34], which allow the “construction” of atomic registers from safe registers, i.e., allow

atomic reads and writes to be simulated by using only non-atomic reads and writes.

These techniques can be used to transform any algorithm that uses only atomic reads

and writes to an algorithm that uses only non-atomic reads and writes. The drawback

of this approach is that it is inefficient, since it increases the RMR and space complexity

of an algorithm by a factor of at least Ω(N). As such, we do not use these techniques in

the design of any algorithms in this thesis.

Beyond atomic reads and writes, there are even stronger primitives like

Compare&Swap and Fetch&Add. These primitives allow a process to atomically

read and update a variable based on the result of the read. We do not make use of these

stronger primitives in any of the algorithms presented in this thesis. Instead, we use

only atomic reads and writes, with the exception of the chapter on k-exclusion, where a

number of the algorithms that we present use only non-atomic reads and writes.

1.7 Previous Work

The mutual exclusion problem was first formulated and solved by Dijsktra [16]. However,

his solution did not satisfy lockout freedom. Instead, his solution satisfied deadlock

freedom.

Knuth [31] was the first to present a mutual exclusion algorithm that satisfied lockout

freedom.

The FCFS property for mutual exclusion was originally formulated by Lamport in

[32], where he also presented the first ME algorithm that satisfied this property. This

algorithm is known as the Bakery algorithm, and is also the first ME algorithm to use

non-atomic reads and writes. It is not local-spin, and suffers from the drawback that

it uses shared variables that can grow without bound. Hadzilacos and Lycklama [36]

presented a non-local-spin FCFS ME algorithm that uses only non-atomic reads and
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writes, and only requires five shared bits per process, meaning that shared variables are

bounded, unlike the Bakery algorithm.

Yang and Anderson (YA) [43] presented the first mutual exclusion algorithm that

uses only atomic reads and writes and has RMR complexity O(logN). Their algorithm

does not satisfy the FCFS property, however. Anderson and Kim [3] presented the first

mutual exclusion algorithm that uses only non-atomic reads and writes and has RMR

complexity O(logN). This algorithm does not satisfy the FCFS property, either.

Jayanti [25] presented the first FCFS mutual exclusion algorithm with RMR

complexity O(logN), although his algorithm requires the use of LoadLinked and

StoreConditional in addition to atomic reads and writes.

Taubenfeld [42] presented the Black-White Bakery algorithm, which is a variant of the

Bakery algorithm that is local-spin, adaptive, and uses only shared variables of bounded

size. Like the Bakery algorithm, it satisfies FCFS, however it differs in that it requires

reads and writes be atomic. Its RMR complexity is O(c2), where c is point contention.

Scott and Scherer [41] proposed the first local-spin abortable mutual exclusion algo-

rithm, but it suffers from the drawback that a process executing the abort protocol has

to potentially wait for other processes before it can make progress. That is, it does not

satisfy bounded abort, which defeats the purpose of providing abort functionality. Later

Scott [40] corrected this deficiency, but the resulting algorithm has unbounded RMR

complexity and requires unbounded space in the worst case. Both of the two preceding

algorithms also require the use of strong synchronization primitives.

Jayanti [26] presented the first local-spin FCFS abortable mutual exclusion algo-

rithm that satisfies bounded abort. It has O(min(c, logN)) RMR complexity, and uses

LoadLinked and StoreConditional.

Group mutual exclusion (GME) was first introduced and solved by Joung [28]. His

solution is not local-spin. Keane and Moir [29] presented a local-spin GME algorithm,

except that their solution does not satisfy the concurrent entering property. The reason
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for this is that their solution uses ordinary mutual exclusion as a building block in the

trying and exit protocols of the algorithm. If multiple processes requesting the same

session attempt to execute the trying protocol concurrently, some processes may have

to wait for an unbounded amount of time as other processes execute through the ME

building block. Danek and Hadzilacos [14] presented the first local-spin GME algorithm.

Their algorithm is in the form of a transformation from FCFS abortable mutual exclusion

to GME. The transformation itself uses only atomic reads and writes. Prior to the present

work, however, the only known FCFS abortable ME algorithm was that of Jayanti [26],

which uses LoadLinked and StoreConditional. Hence, the GME algorithm that is

the result of the transformation also requires LoadLinked and StoreConditional.

More recently, Bhatt and Huang [6] presented a group mutual exclusion algorithm

that has O(min(c, logN)) RMR complexity in the CC model. Their algorithm uses

LoadLinked and StoreConditional.

The k-exclusion problem was first studied by Fischer et al. [19]. They presented a

number of algorithms, none of which is local-spin. The correctness of their algorithms

also rely on the use of “atomic actions”. Atomic actions are segments of code that

Fischer et al. assume execute atomically. The way atomic actions are presented in their

algorithm is by surrounding the code segment with the trying and exit protocols of an

ordinary ME algorithm. Fischer et al. concede that these code segments cannot actually

be executed atomically in practice. As a result, their k-exclusion algorithm does not

satisfy starvation freedom: if a single process halts inside an “atomic action”, it can

prevent all other processes from making progress. To get around this dilemma, they

assume that processes do not crash while executing an atomic action.

Afek et al. [1] presented a k-exclusion algorithm inspired by the Bakery algorithm.

Unlike the Bakery algorithm, this algorithm uses bounded shared variables and requires

the use of atomic reads and writes. Its structure turns out to be similar to several of

the k-exclusion algorithms presented in Chapter 5. The main differences between our
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algorithms and the algorithm of Afek et al. are that the latter is not local-spin, and

we also present variants of our k-exclusion algorithms that make use of only non-atomic

reads and writes.

Several k-exclusion algorithms have been presented [39, 22, 15] that do not satisfy

starvation freedom as we defined it. Rather, they satisfy weaker progress properties that

depend on processes not crashing. In particular, the algorithm of Peterson [39] was not

originally presented as a k-exclusion algorithm, but it is an elementary exercise to convert

it into one [37]. This algorithm satisfies a restricted form of the deadlock freedom property

for k-exclusion in which processes are only allowed to crash in the CS. The algorithm of

Gottlieb et al. [22] satisfies a restricted form of starvation freedom in which processes are

not allowed to crash anywhere outside the NCS. The algorithm of Danek and Lee [15] is

local-spin, however, like the algorithm of Gottlieb et al., starvation freedom depends on

there being no process crashes. Also, it has Θ(N logN) RMR complexity in the worst

case, which we improve upon with the k-exclusion algorithms in this thesis. Excluding

these exceptions, our discussion of k-exclusion algorithms in this thesis is restricted to

algorithms satisfying all of k-exclusion, starvation freedom, and bounded exit.

Burns and Peterson [8] presented a k-exclusion algorithm that requires atomic reads

and writes, but is not local-spin. Dolev et. al [18] presented a k-exclusion algorithm that

requires only non-atomic reads and writes, but it is also not local-spin.

Bhatt and Jayanti [7] presented an algorithm that uses a failure detector [10] to solve

a variant of k-exclusion. In the variant they study, at most k live processes can be in

the CS at the same time. In other words, more than k processes can be in the CS at the

same time, as long as the excess number of processes beyond the k live processes have

all crashed. The structure of their k-exclusion algorithm has some similarities to the

k-exclusion algorithms presented in this thesis. The major difference is that they require

the use of a failure detector. Other differences include the fact that their algorithm is

not local-spin, and that they do not have a variant that works with non-atomic reads
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Reference RMR Complexity Instructions Used Starvation

Free?

Fischer et al. [19] ∞ AA Y

Fischer et al. [20] ∞ AA Y

Dolev et al. [18] ∞ NARW Y

Afek et al. [1] ∞ ARW Y

Peterson (CC) [39] Θ(N3 −Nk2) ARW N

Peterson (DSM) [39] ∞ ARW N

Burns and Peterson [8] ∞ ARW Y

Gottlieb et al. [22] ∞ ARW,

Fetch&Add

N

Bhatt and Jayanti [7] ∞ ARW, FD Y

Anderson and Moir

(CC/DSM) [2]

Θ(k log (N/k)) ARW,

Fetch&Add,

Test&Set,

Compare&Swap

Y

Anderson and Moir

(CC/DSM) [2]

Θ(c) ARW,

Fetch&Add,

Test&Set,

Compare&Swap

Y

Danek and Lee

(CC/DSM) [15]

Θ(k logN) ARW N

Table 1.1: Known k-exclusion algorithms. AA = Atomic Actions, ARW = Atomic Reads

& Writes, NARW = Non-atomic Reads & Writes, FD = Failure Detector
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and writes.

The only previously known local-spin k-exclusion algorithms satisfying starvation free-

dom are by Anderson and Moir [2]. Their algorithms have RMR complexity Θ(k log (N/k))

and Θ(c), which turns out to be Θ(N) in the worst-case, for any k that is a constant frac-

tion of N (e.g., for k = N/2). Unlike the algorithms in this thesis, Anderson and Moir’s

algorithms use strong synchronization primitives such as Fetch&Add, Test&Set, and

Compare&Swap in addition to atomic reads and writes.

We summarize the preceding discussion on k-exclusion algorithms in Table 1.1.

1.8 Contributions and Thesis Outline

In the next chapter we describe in more detail the asynchronous shared-memory model

that we use throughout this thesis, and how we model atomic read and write operations.

We also describe several CC model variants, and describe how the correctness properties

for the different variants of mutual exclusion introduced in this chapter relate to the

computational model. We defer a description of our non-atomic model to Chapter 5,

which is the only chapter that uses it.

In Chapter 3, we present the first known algorithm for FCFS mutual exclusion that

has RMR complexity O(logN) in the DSM and CC models, and uses only atomic reads

and writes. All previously known algorithms for FCFS mutual exclusion either have

super-logarithmic RMR complexity or use synchronization primitives that are stronger

than atomic read and write. Our algorithm is also adaptive to point contention. More

precisely, the RMR complexity of our algorithm is Θ(min(c, logN)), where c is the point

contention.

In Chapter 4, we present a novel transformation from abortable mutual exclusion to

FCFS abortable mutual exclusion that uses only atomic reads and writes. This trans-

formation, in conjunction with results by Lee [15, 35], yields the first known local-spin
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FCFS abortable mutual exclusion algorithm that uses only atomic reads and writes.

Furthermore, the transformation, in conjunction with results by Danek and Hadzilacos

[14], yields the first known local-spin group mutual exclusion algorithm that uses only

atomic reads and writes. Both algorithms that result from the transformation have RMR

complexity O(N) in the DSM and CC models, which is tight for the DSM model [12].

Chapter 5 contains the first known local-spin k-exclusion algorithms that use only

atomic reads and writes. All algorithms have RMR complexity O(N) in both the DSM

and CC models, and satisfy the k-FCFS property. One variant of the algorithms addi-

tionally satisfies the FIFE property. We also present a version of the FIFE k-exclusion

algorithm that works with non-atomic reads and writes. The high-level structure of all

our algorithms is inspired by Lamport’s famous Bakery algorithm.

Problem Upper Bound

(RW)

Upper Bound

(SS)

Lower Bound

(RW)

Lower Bound

(SS)

ME O(logN) [43] O(1) [38] Ω(logN) [5] Ω(1)

FCFS ME O(logN) (Ch. 3) O(1) [38] Ω(logN) [5] Ω(1)

FCFS Abortable

ME

O(N) (Ch. 4) O(logN) [26] Ω(logN) [5] Ω(1)

k-exclusion O(N) (Ch. 5) Θ(k log (N/k))

[2]

Ω(logN) [5] Ω(1)

Table 1.2: Comparison of upper bounds in this thesis to best-known lower-bounds. RW

= Reads and Writes; SS = Strong Synchronization Primitives

Table 1.2 summarizes the results in this thesis and provides a comparison with the

best known lower-bounds. There is a gap between some of the upper-bounds and lower-

bounds, which have yet to be closed. We conclude in Chapter 6 with a discussion of some

of these issues.
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Preliminaries

In this chapter we describe the asynchronous shared-memory model of computation with

atomic reads and writes that we use in the majority of this thesis. We defer a description

of our computation model with non-atomic reads and writes to Chapter 5, which is the

only chapter where we use it.

We also describe a number of different cache-coherent model variants, and describe

more precisely, in the context of our model, the meaning of the correctness properties for

the mutual exclusion variants introduced in the first chapter.

2.1 Asynchronous Shared-Memory Model With

Atomic Reads and Writes

Our goal is to model the execution of processes in an asynchronous shared-memory

multiprocessor computer system. For our purposes, a system consists of a set of N

processes and a set of shared variables to which processes have access. Each shared

variable in the system has an initial value that corresponds to the value it is assigned

before being accessed by any processes. A process is an automaton that has a private

state, which is reflected by the values of a set of private variables (i.e., variables to

19
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which only that process has access). In this thesis, we define processes informally using

pseudocode.

The (global) state of the system specifies an assignment of values to all the shared

variables and all the private variables of each process. The initial state of the system

consists of the assignment of initial values to shared variables and the private state of

each process prior to any process taking any steps. A step by a process consists of a

private computation, along with the read or write of exactly one shared variable.

Informally, an execution describes the sequence of steps taken by processes in the

system and how the state of the system evolves as a result of these steps. More precisely,

an execution (also called an execution history) is a sequence (possibly infinite) of alter-

nating steps and states that begins with the initial state s0, and ends in a state (if finite).

In an execution history H = s0, t0, s1, ..., we use si to represent the i’th state, and ti to

represent the i’th step by some process. We say that H is valid if for any contiguous

subsequence ..., si, ti, si+1, ... of H , two properties hold: First, if ti is performed by process

p, then p’s step is consistent with its program, i.e., ti is a possible step for p given p’s

private state in state si. Second, the state si+1 is identical to si, except that the value of

the shared variable and private variables written in ti is as prescribed by ti.

We henceforth assume that all executions dealt with in this thesis are valid executions.

Also, we assume that processes execute asynchronously, meaning that between any two

steps of some process in an execution history, there can be an arbitrary number of steps

taken by other processes.

A process p crashes in an infinite execution H if it stops taking steps while outside

the NCS, i.e., there exists a state in H after which p does not take any steps and after

p’s last step, p is outside of the NCS.

An algorithm is a way of specifying the system (i.e., it is a specification of the program

for each process in the system, and the initial state of the system). An “execution of

an algorithm” or an “execution generated by an algorithm” is shorthand for saying an
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execution of the system specified by the algorithm.

2.1.1 Notation

States of the system in an execution history are sequentially numbered starting at 0.

The number assigned to a state is referred to as its index, and allows us to uniquely

identify each state in an execution history. An index is a non-negative integer i ∈ N.

We use H [i] to denote the state with index i. Each step is also uniquely identified by

the index associated with the state immediately preceding it. Step i is the step that

occurs immediately after the state with index i and before the state with index i + 1.

Index numbers are not accessible by processes and are only used as a convenient way of

referring to parts of execution histories in our proof of correctness.

For any i, j ∈ N, where j > i, we use the notation H [i, j] to denote the execution

subhistory of H from the state at index i to the state at index j (inclusive).

We use the notation p@i to indicate that process p is in a state such that its next step

will correspond to the execution of a step at line i in the pseudocode for the algorithm,

and the notation p@{i..j} to indicate that p@k for some k in the range i..j.

We use the notation p.v to refer to a private variable v that is owned by process p.

2.2 Correctness Properties and Proofs

In Chapter 1 we introduced a number of variants of mutual exclusion and their correctness

properties. These correctness properties were stated informally without reference to the

model of computation being used. We explain here what these properties mean in the

context of our model.

Let A be an algorithm for a system with N processes. A correctness property is a
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predicate of an execution history H . Let H be the set of all execution histories generated

by A. We say that A satisfies a correctness property if ∀H ∈ H, the correctness property

is true for H .

For example, the correctness properties for ordinary mutual exclusion are as follows:

Mutual Exclusion: ME(H): For all indices i, at most one process is in the CS in state

H [i].

Lockout Freedom: LF(H): If H is infinite and no processes crash in H , then for all

indices i, and all processes p, if p is in the TP in state H [i], then there exists an

index j > i such that p is in the CS in state H [j].

f(N)-Bounded Exit: BE(H, f): For all indices i, and all processes p, if p is in the EP

in state H [i], then if p takes at least f(N) steps after state H [i], then there exists

an index j > i such that p is in the NCS in state H [j] and p takes at most f(N)

steps in H [i, j].

Let F be the set of functions dependent only on N . We say that the N -process

algorithm A satisfies mutual exclusion (resp. lockout freedom, bounded exit) if ∃f ∈ F,

∀H ∈ H such that ME(H) (resp. LF(H), BE(H, f)) is true. We say that A is a correct

mutual exclusion algorithm if it satisfies mutual exclusion, lockout freedom, and bounded

exit.

A may sometimes satisfy a correctness property only under certain conditions1, where

a condition is a predicate of an execution history H . We say that A satisfies a correctness

property under a given condition, if ∀H ∈ H if the given condition is true for H , then

the correctness property is also true for H .

When proving an algorithm correct, we generally use the less formal statements of

its correctness properties, such as those in Chapter 1, with the understanding that they

1This terminology allows several correctness properties in Chapter 3 to be stated more naturally.
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have more precise counterparts of the style described above. In particular, we avoid

explicitly referencing execution histories in our proofs unless necessary for the clarity

of the argument. The intent behind this is to avoid overly complex notation, and as a

result, impart a higher level of intuition as to why our algorithms are correct.

Also, when describing steps executed by a process in a proof, we avoid mentioning

the specific passage the process is executing. Processes can execute multiple passages

of an algorithm, and so to be strictly accurate, we should also specify the passage it is

executing. However, to avoid overly complex notation, if we do not have to reason across

multiple passages, we omit specifying the passage and assume that it is the “current”

(i.e., latest) one with respect to some state in the execution.

2.3 Variants of the CC Model

As explained in the introduction, there are two ways of defining how shared memory

works: the DSM model, and the CC model. We explain here the CC model variants

relevant to this thesis.

The following features are common to all variants of the CC model: (i) there is a “main

memory”, which a process can access by making a remote memory reference; and (ii)

each process has a local cache of unbounded size, which a process can access by making a

local memory reference. The different variants of CC models can be classified along two

different dimensions: the protocol used for handling updates to main memory (write-

through or write-back), and the protocol used for enforcing cache consistency (write-

invalidate or write-update).

With a write-through/write-invalidate protocol, any time a process writes a shared

variable, it writes it through to main memory, hence making a remote memory reference.

Whenever a process reads a shared variable, it first attempts to read a copy of the variable

from its cache. If a copy does not exist in the process’s cache, the process will read the
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variable from main memory, thereby incurring a remote memory reference, and then will

cache a copy of the variable locally. A cached copy of the variable v remains in a process

p’s cache until the copy is invalidated, at which time it is effectively erased from p’s cache.

All cached copies of v are invalidated whenever any process writes v to main memory.

Note that when a process writes a variable, it incurs only one remote memory reference,

even if the write results in multiple cached copies of the variable being invalidated.

When a write-back protocol is used with a write-invalidate protocol, writes are initially

cached and the cached copies are written back to main memory at some later point. The

criterion used for deciding when to write back a cached copy of a variable to main memory

has to do with a mode flag associated with the copy. A variable can be cached in exclusive

mode or shared mode. If a cached copy of a variable is in a process p’s cache in exclusive

mode, then any writes by p are made to its cache. However, if a cached copy of variable

v is not in a process p’s cache, or it is there in shared mode, then a write by p does the

following: it first invalidates all other copies of v, then it writes to main memory any

copy of v cached in exclusive mode by another process, and finally it creates a copy of v

in its own cache in exclusive mode. Reads are also slightly more complex: if a process

p reads a variable v that is not in its cache, then p writes to main memory any copy of

v cached in exclusive mode by another process q, changes the mode of the copy of v in

q’s cache to shared, and then copies v from main memory into its own cache. If p reads

a variable v that is already in its cache in either mode, then p reads the cached copy

locally without changing the copy’s mode flag. Like the write-through/write-invalidate

model, a cached copy of a variable remains in a process’s cache until it is invalidated.

In the write-update protocol, whenever a process writes a variable v, it updates the

contents of any other caches that currently store v. Write-update protocols are complex

and harder to implement in practice, and thus are not common. The main difficulty with

this protocol is that it must broadcast writes to every cache, and as a result, takes up

more bandwidth [23]. We do not consider this variant of the CC model further in this



Chapter 2. Preliminaries 25

thesis.

For the rest of this thesis, when dealing with the CC model we assume that a write-

through/write-invalidate protocol is used. Our RMR complexity results apply equally

to the CC models that use write-back/write-invalidate protocols. This is because the

number of RMRs incurred using write-through/write-invalidate is an upper-bound for

the number of RMRs incurred using the write-back/write-invalidate model.
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Efficient FCFS Mutual Exclusion

In this chapter we present the first known algorithm for FCFS mutual exclusion that uses

only atomic reads and writes and has O(logN) RMR complexity. Our algorithm is also

adaptive to point contention. More precisely, our algorithm has Θ(min(c, logN)) RMR

complexity, where c is the point contention.

Note that the properties satisfied by the algorithm that we present in this chap-

ter cannot be duplicated by combining the FCFS abortable mutual exclusion algo-

rithm of Jayanti [26], which uses LoadLinked and StoreConditional and has

O(min(c, logN)) RMR complexity, with the results of Golab et al. [21]. Golab et al. have

presented an implementation of a wide class of primitives, which includes LoadLinked

and StoreConditional, that uses only reads and writes and requires only a constant

number of RMRs for each operation of the implemented primitive. Using this implemen-

tation they show how to transform algorithms that rely on this class of primitives into

algorithms that use only reads and writes, with only a constant-factor increase in the

number of RMRs.

Prima facie this result appears to immediately imply the main result of this chapter:

Applying the transformation of Golab et al. to Jayanti’s algorithm would appear to yield

a O(min(c, logN)) RMR complexity adaptive, FCFS mutual exclusion algorithm that

26
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uses only reads and writes. This is not so, however: Although the transformation of

Golab et al. preserves properties such as mutual exclusion and lockout freedom, it does

not necessarily preserve properties such as FCFS or bounded exit. This is because the

transformation introduces potentially unbounded waiting (albeit on locally accessible

variables, so that RMR complexity is preserved within a constant factor), and may

therefore fail to preserve properties that require bounded termination, as FCFS and

bounded exit do. In fact, applying the Golab et al. transformation to Jayanti’s algorithm

results in an algorithm that satisfies mutual exclusion and lockout freedom, but not FCFS

or bounded exit.

3.1 FCFS Algorithm and High-level Description

The new FCFS mutual exclusion algorithm is given in Figure 3.1 and has the following

high-level structure. In the doorway, a process receives a ticket from a ticket dispenser

(line 4). The dispenser is similar to a modular atomic counter, which returns tickets

with increasing values from a bounded interval. As the dispenser is not actually atomic,

processes that invoke the dispenser concurrently may receive the same ticket. Also,

even though the dispenser returns tickets from a bounded interval, meaning that the

dispenser eventually “wraps around”, the interval is large enough to ensure that tickets

are not reused too soon. After a process p obtains a ticket, it enters the waiting room

(lines 5–16) where it adds itself to a priority queue (Q) ordered by ticket (line 11). To

ensure that FCFS is not violated, p waits to reach the front of the queue before entering

the CS (line 15). Once p is done with the CS, p removes itself from the queue (line 18),

and notifies its successor (lines 20–22).

The priority queue has standard operations Insert and FindMin, and its entries are

pairs of the form (process ID, ticket). We also define the operationRemove, which allows

any element to be removed from the priority queue. Insert is idempotent, and Remove



Chapter 3. Efficient FCFS Mutual Exclusion 28

Figure 3.1: FCFS mutual exclusion algorithm for process p ∈ {1, ..., N}.

shared variables:
Set : SpecialSet
Q : PriorityQueue
Head : array[1..N ] of Boolean

(In the DSM model, Head [p] is local to process p.)

private variables:

ticket : integer from the set {0, .., 7N − 1}
tmp id : integer

loop1

NCS2

Set .InsertSelf() // Doorway begins.3

ticket := ObtainTicket() // Doorway ends.4

LOCK()5

Head [p] := false6

tmp id := Set .RemoveSelf()7

if tmp id 6= ⊥ then8

// Enqueue process tmp id with ‘‘dummy’’ ticket.

Q .Insert(tmp id ,−1)9

Q .Remove(p,−1) // Remove (p,−1) from queue if present.10

Q .Insert(p, ticket) // Reinsert p with ‘‘proper’’ ticket.11

tmp id := Q .FindMin() // Get the head process in the queue.12

Head [tmp id ] := true // Notify head process to advance.13

UNLOCK()14

await Head [p] = true // Wait to reach the head of the queue.15

LOCK()16

CS // The critical section.17

Q .Remove(p, ticket) // Remove p from the priority queue.18

DoneWithTicket()19

tmp id := Q .FindMin()20

if tmp id 6= ⊥ then21

Head [tmp id ] := true // Notify next process to advance.22

UNLOCK()23

end loop24
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has no effect if attempting to remove an item that is not in the queue. FindMin() returns

the process ID whose corresponding ticket is minimal (i.e., the head element), or ⊥ if

the queue is empty. An auxiliary lock (lines 5, 14, 16, 23) is used to serialize operations

on the priority queue, which allows us to implement the priority queue with logarithmic

step complexity using elementary data structure techniques.

It turns out that to protect the priority queue in the exit protocol it is not strictly

necessary for the auxiliary lock to be acquired at line 16 (before the CS). The algorithm

could be modified to acquire the lock immediately after the CS and it would still be

correct. In this case, however, the bounded exit property would not be satisfied. As

bounded exit can be a desirable property, the algorithm is designed to satisfy it.

Processes use the Boolean array Head to notify another process when it becomes the

head of the queue. A process can become the head of the queue after another process

removes itself from the queue in the exit protocol (line 18), or after the queue is modified

in the waiting room (lines 10–11).

The algorithm contains additional features, not described above, to handle the fol-

lowing race condition: process p finishes the doorway before q starts the doorway, but

then q adds itself to Q before p. By the FCFS property, p should enter the CS before

q, but until p is added to Q , q cannot tell (from the state of Q alone) whether it should

enter the CS before or after p. To prevent q from entering the CS prematurely, special

“dummy tickets” and a shared object, Set , of a set-like type called SpecialSet are used.

At the beginning of the doorway, at line 3, a process q adds itself to Set . In the waiting

room, at line 7, q removes itself from Set , and also learns the ID of one other process

p 6= q in Set , if it exists (⊥ otherwise). If p exists, then p must be in the trying protocol

at or before the lock at line 5; p cannot be past this point, as q holds the auxiliary lock

while q is at lines 6–13. Process q adds p to Q at line 9 with a “dummy” ticket −1,

which is smaller than any “proper” ticket returned by the ticket dispenser at line 4. The

insertion of p into Q in this way guarantees that p will be ahead of q in Q until p executes
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the locked code at lines 6–13, where it replaces its dummy ticket in Q with its proper

ticket (lines 10–11). This ensures that q cannot advance into the CS prematurely.

The Θ(min(c, logN)) RMR complexity of the algorithm arises as follows. The only

lines where a super-constant number of RMRs can be made are at the lines where a

process accesses the SpecialSet object, the ticket dispenser, the priority queue Q , or the

auxiliary lock. For the auxiliary lock we use Kim and Anderson’s non-FCFS mutual

exclusion algorithm [30], which has RMR complexity Θ(min(c, logN)). We implement

the priority queue using elementary data structure techniques, resulting in an imple-

mentation with O(log c) step complexity (and hence RMR complexity). Lastly, for the

SpecialSet and ticket dispenser, we use implementations that have O(min(c, logN)) step

complexity (and hence RMR complexity) [13]. Thus, the overall RMR complexity of the

algorithm presented here is Θ(min(c, logN)).

A more precise description of the properties that the SpecialSet and ticket dispenser

building blocks must satisfy is given in the following sections.

3.2 SpecialSet Specification

In this section, we describe the data structure Set used in our mutual exclusion algorithm.

We refer to this data structure as a SpecialSet, because it only supports certain specialized

set operations.

A SpecialSet stores a set of process IDs, which is initially empty. Processes manipulate

the set only by adding and removing their own IDs through the operations InsertSelf()

and RemoveSelf(), which must be accessed according to the following condition:

Condition 1. The calls to InsertSelf() and RemoveSelf() made by any process

occur in an alternating sequence, beginning with InsertSelf().

We refer to the time between the start of a call to InsertSelf() and the next time

RemoveSelf() finishes as a Set-passage.
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Function InsertSelf() returns nothing to the caller, whereas RemoveSelf() re-

turns information about set elements other than the caller’s own ID. In order to specify

the response of RemoveSelf() more precisely, we first establish some definitions:

Definition 1. A process is in the set if and only if it has completed a call to InsertSelf(),

but has not subsequently completed a call to RemoveSelf().

Definition 2. A process is participating in the set if and only if it is either in the set

or it is executing InsertSelf().

The value returned by RemoveSelf() is more precisely specified as follows:

Specification 1. If a process p calls RemoveSelf() and this call terminates, then the

value returned by RemoveSelf() is either ⊥ or some process ID q, according to the

following rules:

• If RemoveSelf() returns q 6= ⊥, then q 6= p and q was participating in the set at

some point during p’s call to RemoveSelf().

• If RemoveSelf() returns ⊥, then no process other than p was continuously in the

set throughout p’s call to RemoveSelf().

Danek and Golab [13] presented an algorithm for SpecialSet that has logarithmic step

complexity (and hence RMR complexity) and is also adaptive. More precisely, this

implementation satisfies the following property:

Specification 2. For any process p, and any Set-passage by p, p takes at most

O(min(c′, logN)) steps in InsertSelf() and RemoveSelf(), where c′ denotes the max-

imum number of processes executing a Set-passage simultaneously at any point during p’s

Set-passage.

We use this implementation in the FCFS mutual exclusion algorithm in Figure 3.1,

where the following restriction on concurrency applies:
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Condition 2. Operation RemoveSelf() is executed in mutual exclusion.

The SpecialSet implementation in [13] takes advantage of this condition. (We are not

aware of any implementation satisfying the given specification that does not require this

condition.)

The following result appears as Theorem 6.12 in [13]:

Theorem 3.1. The SpecialSet algorithm presented in [13] satisfies Specification 1 under

Conditions 1 and 2.

The following theorem appears as Theorem 6.13 in [13]:

Theorem 3.2. The SpecialSet algorithm presented in [13] satisfies Specification 2 under

Conditions 1 and 2.

3.3 Ticket Dispenser Specification

Our mutual exclusion algorithm uses numbered tickets, like Lamport’s bakery algorithm

[32]. Tickets are obtained by calling function ObtainTicket(), which is used in con-

junction with function DoneWithTicket() according to the following condition:

Condition 3. The calls to ObtainTicket() and DoneWithTicket() made by any

process occur in an alternating sequence, beginning with ObtainTicket().

We refer to the time between the start of a call to ObtainTicket() and the next

time DoneWithTicket() finishes as a dispenser-passage.

We can think of ObtainTicket() as returning a (not necessarily unique) element of

some set of tickets, and DoneWithTicket() as cleaning up some internal state once a

process is done using a particular ticket. (Using a pair of functions in this way makes

the ticket dispenser somewhat more complex to specify, but easier to implement.)
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Definition 3. We say that a process is participating in the ticket dispenser if and only

if it has started executing ObtainTicket(), but has not completed its subsequent call to

DoneWithTicket().

Informally, we say that a process holds a ticket x if it is participating and its last call

to ObtainTicket() ran to completion with response x. We say that a ticket is active

if and only if it is held by some process, otherwise it is inactive.

Tickets generated by the dispenser satisfy the following basic properties:

Specification 3. (a) The domain of tickets is the set of integers modulo mN for some

integer m ≥ 2.

(b) At any time, active tickets are confined to some interval of at most mN/2 integers

that are consecutive modulo mN .

We will use 3 (a) and (b) as follows to define a total order on tickets that are simultane-

ously active. Given two active tickets i and j, where i < j, we will say that i is less than

j (denoted i⊳ j) if j− i < mN/2, otherwise we will say that i is greater than j (denoted

i ⊲ j). Finally, if i = j then we will say i is equal to j. (We will also use E and D to

denote weak inequalities.) For technical reasons, we also define a special dummy ticket,

denoted −1, which is less than any active ticket. We say that two tickets are comparable

either if they are simultaneously active, or if one or both is −1. Otherwise we say two

tickets are incomparable. Finally, note that our mutual exclusion algorithm compares

tickets only implicitly, inside the priority queue.

Having defined an ordering among simultaneously active tickets, we are now ready to

specify the remaining correctness properties of the ticket dispenser.

Specification 4. Whenever distinct processes p and q hold tickets tp and tq si-

multaneously, and these tickets were generated by calls Cp and Cq (respectively) to

ObtainTicket(), then tickets tp and tq are related as follows: if Cp completed before

Cq, then tp ⊳ tq.
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Danek and Golab [13] presented a ticket dispenser algorithm that has logarithmic step

complexity (and hence RMR complexity) and is also adaptive. More precisely, this

implementation satisfies the following specification:

Specification 5. For any process p, and any dispenser-passage by p, p takes at most

O(min(c′, logN)) steps in ObtainTicket() and DoneWithTicket(), where c′ denotes

the maximum number of processes executing a dispenser-passage simultaneously at any

point during p’s dispenser-passage.

We use this implementation in the FCFS mutual exclusion algorithm in Figure 3.1,

where the following restriction on concurrency applies:

Condition 4.

(a) Function DoneWithTicket() is executed in mutual exclusion.

(b) If processes p and q are participating simultaneously and hold tickets tp

and tq, respectively, where tp ⊳ tq, then q does not subsequently call

DoneWithTicket() before p. (In other words, q does not stop participating before

p does.)

(c) If processes p and q are simultaneously inside ObtainTicket(), then q does not

subsequently call DoneWithTicket() before p completes ObtainTicket().

Danek and Golab take advantage of this condition to simplify the ticket dispenser

implementation in [13]. (We are not aware of any implementation satisfying the given

specification that does not require these conditions.)

We can easily verify by inspection of Figure 3.1 that our ME algorithm uses the ticket

dispenser according to Condition 3, and Condition 4 (a). However, it is not clear that our

ME algorithm also uses the dispenser according to the latter two parts of Condition 4.

Establishing that these conditions are true requires careful reasoning about the ME
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algorithm, the details of which are provided in the following section, where we prove the

ME algorithm correct.

The following result appears as Theorem 7.12 in [13]:

Theorem 3.3. The ticket dispenser algorithm presented in [13] satisfies Specifications 3

and 4 under Conditions 3 and 4.

The following result appears as Theorem 7.13 in [13]:

Theorem 3.4. The ticket dispenser algorithm presented in [13] satisfies Specification 5

under Conditions 3 and 4.

3.4 Correctness of FCFS ME Algorithm

In this section, we prove the correctness and analyze the RMR complexity of our FCFS

mutual exclusion algorithm, which was presented earlier in Figure 3.1.

Our proof of correctness is broken down into two main sections. The first section

provides a general proof of correctness in which the only assumption that we make about

the SpecialSet and ticket dispenser used in the algorithm is that they satisfy the spec-

ifications outlined in Sections 3.2 and 3.3, respectively. In particular, at this point, we

do not use the implementations of the SpecialSet and the ticket dispenser presented in

[13], which are correct only under certain conditions. This allows us to reason about the

correctness of our algorithm without reference to Conditions 1, 2, 3, and 4.

In the second section, we show that the FCFS ME algorithm uses the SpecialSet and

ticket dispenser procedures according to Conditions 1, 2, 3, and 4. When used under

these conditions, the SpecialSet and ticket dispenser implementations presented in [13]

are correct, as guaranteed by Theorems 3.1 and 3.3, respectively.

Combining the results of these two sections establishes that the FCFS mutual exclu-

sion algorithm in Figure 3.1 is correct when it uses the SpecialSet and ticket dispenser

implementations presented in [13].
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The first section of our proof is further broken down into three parts. In the first part,

we prove that the algorithm satisfies FCFS (Lemma 3.6). This is done by showing that if

a process p finishes ObtainTicket() before another process q begins ObtainTicket(),

then q does not enter the CS before p. Hence, if p finishes the doorway before q begins

the doorway, q does not enter the CS before p.

In the second part, we establish that the algorithm satisfies lockout freedom

(Lemma 3.8). This is done by first proving that deadlock freedom holds (Lemma 3.7), and

then using the fact that the algorithm satisfies FCFS to conclude that lockout freedom

also holds.

In the third part, we prove that our algorithm satisfies mutual exclusion and bounded

exit. After establishing the correctness of our algorithm, we analyze its RMR complexity

in the last section.

3.4.1 General Proof of Correctness

In this section, we assume an arbitrary correct implementation of SpecialSet and the

ticket dispenser. That is, we assume that the SpecialSet operations, InsertSelf() and

RemoveSelf(), satisfy Specifications 1 and 2. We also assume that the ticket dispenser

operations, ObtainTicket() and DoneWithTicket(), satisfy Specifications 3, 4, and

5.

3.4.1.1 Part 1 – FCFS

The following lemma is used to prove that the algorithm in Figure 3.1 satisfies FCFS.

Lemma 3.5. (Smaller-Ticket-First-Served (STFS)) If some processes p and q each ex-

ecute passages of the algorithm in Figure 3.1 in which they simultaneously hold tickets

tp and tq, respectively, before entering the CS, and tp ⊳ tq, then q does not enter the CS

before p.
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Proof. Suppose, by way of contradiction, that the lemma does not hold. Then there exists

passages of p and q in which p and q simultaneously hold tickets tp and tq, respectively,

before entering the CS, tp ⊳ tq, and q enters the CS before p.

Process q sets Head [q] = false at line 6, and q cannot set Head [q] = false again until

after executing through the CS and starting a new passage. By assumption, q enters

the CS before p, and so q must read Head [q] = true at line 15 before p enters the CS.

The preceding facts mean that there exists some process r (possibly q itself) that sets

Head [q] = true: (i) after q sets Head [q] = false at line 6, (ii) before q enters the CS,

and therefore (iii) before p enters the CS. There are only two places in the algorithm

where r can set Head [q] = true: either at line 13 or line 22. These lines are part of the

locked segment of code consisting of lines 6–13 and lines 17–22. By this, the fact that

line 6, where q sets Head [q] = false, is also part of the locked segment of code, and the

fact that r sets Head [q] = true after q sets Head [q] = false, it follows that r does not set

Head [q] = true until after q finishes executing through lines 6–11. (Recall that r may be

q itself. If r 6= q, r does not set Head [q] = true until after q finishes executing through

lines 6–13, and hence lines 6–11.) Furthermore, whichever line that r executes to set

Head [q] = true (line 13 or line 22), r’s preceding call to Q .FindMin() (line 12 or line 20,

respectively), must return q. Lines 12 and 20 are protected by the same lock as lines 13

and 22. Hence, since r sets Head [q] = true after q executes through lines 6–11, it must

also be the case that r’s call to Q .FindMin() occurs after q finishes executing through

lines 6–11.

Process q removes its dummy ticket and adds itself to the priority queue with its

proper ticket (i.e., tq) at lines 10–11. This and the argument in the preceding paragraph

imply that when r calls Q .FindMin(), process q will be in the priority queue with its

proper ticket. We now prove that when r calls Q .FindMin(), process p is also in the

priority queue with its proper ticket.

Claim 3.5.1. When r calls Q .FindMin(), process p is in the priority queue with its
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proper ticket (i.e., tp).

Proof. Suppose, by way of contradiction, that the claim is false. This means that when r

calls Q .FindMin(), either p is in the priority queue with a dummy ticket, or it is not in

the priority queue at all. The former case is not possible: If p were in the priority queue

with a dummy ticket, r’s call to Q .FindMin() would have to return a process with a

dummy ticket, contradicting that it actually returns q. Thus it must be the case that p

is not in the priority queue at all.

Let Γ be the execution subhistory from the step at which q finishes the doorway to

when r starts its call to Q .FindMin().

By assumption, process p and q simultaneously hold their tickets tp and tq before

entering the CS, and tp ⊳ tq. This and Specification 4 (with the roles of p and q inter-

changed, stated in the contrapositive) imply that p must have started ObtainTicket()

at line 4 by the time q finishes ObtainTicket(), and hence by the the beginning of Γ.

Furthermore, by assumption, q enters the CS before p, and so p cannot go past line 16

before the end of Γ. Thus, p must be somewhere at lines 4–16 during Γ.

Process p cannot have executed the locked segment of code at lines 6–13 before the

end of Γ, otherwise p will be in the priority queue with its proper ticket when r calls

Q .FindMin(), contradicting that p is not in the priority queue. Hence, p must be at

lines 4–5, and hence also in Set (see Definition 1 for what it means for a process to be in

Set), during Γ.

Let u be the last process to call Set .RemoveSelf() at line 7 in Γ. We know that u

exists because q must execute Set .RemoveSelf() in Γ. To see why this is the case, we

observe that: (i) q finishes the doorway at the start of Γ, and (ii) q executes lines 6–11,

and hence Set .RemoveSelf() at line 7, before r calls Q .FindMin() at the end of Γ.

Process u’s call to Set .RemoveSelf() will return a value different from ⊥ by Specifi-

cation 1 since p is in Set , and so u will add a process with a dummy ticket to the priority

queue at line 9. Since process u is the last process to execute Set .RemoveSelf() in Γ,
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it is also the last process to execute through lines 6–11 in Γ. This, and the fact that

r cannot call Q .FindMin() until after u has finished lines 6–11, imply that a dummy

ticket will be in the priority queue when r calls Q .FindMin(). This contradicts the fact

that r’s call to Q .FindMin() returns q.

The set of tickets that are in the priority queue when r calls Q .FindMin() are all

active, and so they are totally ordered. (The discussion after Specification 3 describes

how a total order can be defined on tickets that are simultaneously active.) Thus when

Q .FindMin() returns q to r, we are guaranteed that for any ticket t in the priority

queue, tqE t. By Claim 3.5.1, p is in the priority queue with its proper ticket when r calls

Q .FindMin(), and so tq E tp. However, this contradicts the assumption that tp ⊳ tq.

Lemma 3.6. The algorithm in Figure 3.1 satisfies FCFS.

Proof. Assume that a process p finishes the doorway before a process q starts it, and

suppose by way of contradiction that q enters the CS before p. Let tp and tq be the

tickets that p and q receive from ObtainTicket(), respectively. Since p finishes the

doorway before q, and q enters the CS before p, there is a point in the execution in which

p and q simultaneously hold tp and tq before entering the CS. Moreover, the fact that p

finishes the doorway before q starts the doorway means that p finishes ObtainTicket()

before q startsObtainTicket(). Hence by Specification 4, tp⊳tq. These preceding facts,

and Lemma 3.5 (STFS), imply that q does not enter the CS before p. This contradicts

the assumption that q enters the CS before p.

3.4.1.2 Part 2 – Lockout Freedom

To prove that lockout freedom holds, we first prove that deadlock freedom holds. Once we

have established that the algorithm satisfies deadlock freedom, we use this in conjunction

with the fact that the algorithm satisfies FCFS (Lemma 3.6) to show that lockout freedom

also holds.



Chapter 3. Efficient FCFS Mutual Exclusion 40

Lemma 3.7. The algorithm in Figure 3.1 satisfies deadlock freedom.

Proof. Suppose, by way of contradiction, that deadlock freedom does not hold. Thus

there exists an infinite history H , generated by the algorithm in Figure 3.1, in which no

processes crash, such that some process p takes an infinite number of steps in the trying

protocol, and after some state in H no process executes through the CS. This, the fact

that p does not crash, and the observation that there are no multi-line loops in the trying

protocol, imply that there is some line in the trying protocol that p eventually executes

repeatedly without advancing further in the algorithm. The SpecialSet and ticket dis-

penser procedures have bounded step complexity by Specification 2 and Specification 5.

Consequently, by inspection, the only possible lines in the algorithm that p may not

advance past are lines: 5, 14, 15, 16, and 23. By assumption, no process remains in the

CS forever, and the auxiliary ME algorithm used at lines 5, 14, 16, 23 satisfies lockout

freedom and bounded exit. This implies that no process ever gets stuck in the auxiliary

ME algorithm. This means that line 15 is the only line past which p may not advance.

Let q be the last process in H to execute Q .FindMin() (line 12 or line 20). Process q

exists, since (i) some process reaches line 15 without advancing past it, and hence must

execute line 12, and (ii) there is a state after which no process executes through the CS.

Claim 3.7.1. When q calls Q .FindMin() for the last time, there are no processes with

dummy tickets in the priority queue.

Proof. Suppose, by way of contradiction, that the claim is false. That is, there exists a

process r in the priority queue, Q , with a dummy ticket when q calls Q .FindMin(). The

priority queue does not initially contain any elements, and so there must be a step in the

execution when some process adds r to Q with a dummy ticket. Consider the last step

prior to q’s call to Q .FindMin() where this happens, and assume it is done by a process

u. By inspection of the algorithm, we see that the only place where u can add r to Q is

at line 9. For this line to be executed, u must have received r as a return value from its
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preceding call to Set .RemoveSelf() at line 7. By Specification 1, we have the following

two facts: (i) when u executes line 7, r is in Set or is executing Set .InsertSelf(), and

(ii) r 6= u. Furthermore, process r adds itself to Set when it calls Set .InsertSelf() at

line 3 and removes itself when it calls Set .RemoveSelf() at line 7. These preceding

facts, plus the observation that line 7 is part of a locked segment of code consisting of

lines 6–13, imply that r@{3..5} holds when u calls Set .RemoveSelf().

Process u is the last process prior to q’s call to Q .FindMin() to add r to Q with a

dummy ticket, and r will remove itself from the queue if it executes through the locked

segment of code at lines 6–13. Furthermore, r is in Q with a dummy ticket when q

calls Q .FindMin(), and so r@{3..5} must be invariant between the start of u’s call to

Set .RemoveSelf() to the end of q’s call to Q .FindMin(). After this, r eventually

executes through lines 6–13 and calls Q .FindMin() at line 12. This follows from the

lockout freedom property of the auxiliary ME algorithm, the fact that all statements in

lines 6–13 terminate after a bounded number of steps, and the fact that r does not crash.

Thus r calls Q .FindMin() after the last call to Q .FindMin(), which is a contradiction.

Claim 3.7.2. Process q’s last call to Q .FindMin() does not return ⊥.

Proof. Suppose, by way of contradiction, that Q .FindMin() returns ⊥. This means that

Q is empty.

Process q’s last call to Q .FindMin() is either at line 12 or at line 20. We consider

these two cases separately:

Case 1: q’s last call to Q .FindMin() is at line 12.

Immediately before executing line 12, process q executes line 11, where it inserts itself

into the priority queue. Since no other process can remove q from Q , and q does not

remove itself until q executes line 18, this means Q is non-empty when q executes line

12, contradicting that Q is empty.
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Case 2: q’s last call to Q .FindMin() is at line 20.

By assumption, some process p reaches line 15 but does not advance past it. Either

p@{14..15} when q calls Q .FindMin(), or not. In the former case, p will have inserted

itself into the priority queue when it last executed line 11. Moreover, p cannot be removed

fromQ until p executes line 18, and hence Q is non-empty when q executes Q .FindMin(),

contradicting that Q is empty. In the latter case, in which p@{14..15} is not true when

q calls Q .FindMin(), to reach line 15 p will have to execute through lines 6–13 after

q has executed line 23, and therefore after q has executed line 20. This means that

p will execute Q .FindMin() at line 12 after the last call to Q .FindMin(), which is a

contradiction.

Claim 3.7.3. Process q’s last call to Q .FindMin() does not return q.

Proof. Suppose, by way of contradiction, that Q .FindMin() returns q.

Process q’s last call to Q .FindMin() is either at line 12 or line 20. We consider these

two cases separately:

Case 1: q’s last call to Q .FindMin() is at line 12.

In this case, q sets Head [q] = true at line 13. Hence, q will advance past line 15. By

the lockout freedom property of the auxiliary ME algorithm, the fact that the CS is finite,

the fact that q does not crash, and the fact that the statements in lines 18–19 terminate

after a bounded number of steps, it follows that q will eventually execute line 20. That

is, q will eventually execute Q .FindMin() after the last call to Q .FindMin(), which is

a contradiction.

Case 2: q’s last call to Q .FindMin() is at line 20.

Process q removes itself from the priority queue at line 18, and so the call to

Q .FindMin() at line 20 cannot return q, contradicting the assumption that it does.
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Claim 3.7.4. If process q’s last call to Q .FindMin() returns s, s 6= ⊥, and s 6= q, then

process s makes a call to Q .FindMin() after q’s last call.

Proof. Assume process q’s call to Q .FindMin() returns s, s 6= ⊥, and s 6= q. Since

s 6= ⊥, the process s is in the priority queue. By Claim 3.7.1, s cannot be in the priority

queue with a dummy ticket. This means that when q calls Q .FindMin(), s must have

inserted itself with its proper ticket at line 11 and not yet removed itself at line 18,

i.e., s@{12..18}. By the assumption that s 6= q, this means s cannot be in any locked

segments concurrently with q, and so when q calls Q .FindMin(), s@{14..16}. After q

calls Q .FindMin(), q sets Head [s] = true (either at line 13 or line 22). No process can set

Head [s] = false after this until s executes its next passage (if any). It follows from this,

lockout freedom of the auxiliary ME algorithm, the fact that processes do not crash, and

the fact that the statements in lines 18–19 terminate after a bounded number of steps,

that after q’s last call to Q .FindMin(), process s eventually executes through the CS

and reaches line 20 where it calls Q .FindMin(). That is, s calls Q .FindMin() after q’s

last call to Q .FindMin().

By Claims 3.7.2, 3.7.3, and 3.7.4, it follows that some process executes

Q .FindMin() after the last call to Q .FindMin(), which is a contradiction.

Lemma 3.8. The algorithm in Figure 3.1 satisfies lockout freedom.

Proof. The lemma follows immediately from the fact that the algorithm satisfies FCFS

(Lemma 3.6) and deadlock freedom (Lemma 3.7).

3.4.1.3 Part 3 – Mutual Exclusion and Bounded Exit

Lemma 3.9. The algorithm in Figure 3.1 satisfies mutual exclusion.
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Proof. The lemma follows immediately from the fact that the CS is surrounded by the

trying and exit protocol of the auxiliary mutual exclusion algorithm (line 16 and line 23).

Lemma 3.10. The algorithm in Figure 3.1 satisfies bounded exit.

Proof. The exit protocol of the auxiliary mutual exclusion algorithm at line 23 satisfies

bounded exit, and by Specification 5, the DoneWithTicket() operation at line 19 ter-

minates after a bounded number of steps. Moreover, the priority queue is implemented

using elementary (sequential) data structure techniques, and so the priority queue op-

erations at line 18 and line 20 also terminate after a bounded number of steps. By

inspection, a process finishes the other lines of the exit protocol in a bounded number of

its own steps, and hence the algorithm satisfies bounded exit.

Theorem 3.11. If the SpecialSet and ticket dispenser implementations used by the al-

gorithm in Figure 3.1 satisfy Specifications 1, 2, 3, 4, and 5, then the algorithm satisfies

FCFS, lockout freedom, mutual exclusion, and bounded exit.

Proof. Follows from Lemma 3.6, 3.8, 3.9, and 3.10.

3.4.2 Correctness When Using Conditional SpecialSet and

Ticket Dispenser implementations

In this section we prove that the algorithm in Figure 3.1 is correct when it uses the

SpecialSet and ticket dispenser implementations presented in [13]. We do this by show-

ing that processes invoke the SpecialSet and ticket dispenser according to Conditions 1,

2, 3, and 4. This implies that the SpecialSet and ticket dispenser implementations pre-

sented in [13] behave correctly when used in our algorithm. Thus, in conjunction with

Theorem 3.11, we conclude that the FCFS mutual exclusion algorithm that uses these

SpecialSet and ticket dispenser implementations is also correct.
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3.4.2.1 SpecialSet Behaves Correctly

Below we prove that the algorithm uses the SpecialSet object according to Condition 1

and 2. This allows us to conclude that the implementation presented in [13] satisfies

Specifications 1 and 2 when used by our algorithm.

Lemma 3.12. (Condition 1 and 2) Processes invoke InsertSelf() and

RemoveSelf() in the algorithm in Figure 3.1 according to the following rules:

1. The calls to InsertSelf() and RemoveSelf() made by any process occur in an

alternating sequence, beginning with InsertSelf(); and

2. Operation RemoveSelf() is executed in mutual exclusion.

Proof. The first part follows easily by inspection of the algorithm in Figure 3.1, and the

second part follows from the fact that RemoveSelf() is surrounded by the trying and

exit protocol of the auxiliary mutual exclusion algorithm at line 5 and line 14.

Lemma 3.13. The SpecialSet implementation presented in [13] satisfies Specifications 1

and 2 when used by the algorithm in Figure 3.1.

Proof. The result follows by Lemma 3.12, Theorem 3.1, and Theorem 3.2.

3.4.2.2 Ticket Dispenser Behaves Correctly

Below we prove that Condition 3 and Condition 4 hold. These results are used by

Lemma 3.19 to conclude that the ticket dispenser implementation presented in [13] sat-

isfies Specifications 3, 4, and 5 when used by our algorithm.

Lemma 3.14. (Condition 3) The calls to ObtainTicket() and

DoneWithTicket() made by any process in the algorithm in Figure 3.1 occur

in an alternating sequence, beginning with ObtainTicket().
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Proof. The lemma follows easily by inspection of the algorithm in Figure 3.1.

Lemma 3.15. (Condition 4 (a)) Function DoneWithTicket() is executed in mutual

exclusion in the algorithm in Figure 3.1.

Proof. The lemma follows from the fact that the only call to DoneWithTicket() at

line 19 is surrounded by the trying and exit protocol of the auxiliary mutual exclusion

algorithm at line 16 and line 23.

We use the following lemma in the proof that Condition 4 (b) and (c) hold.

Lemma 3.16. Let H be any history generated by the algorithm in Figure 3.1, and

let i1 and i2 be indexes, where i1 ≤ i2. If a process p executes continuously inside

ObtainTicket() during H [i1, i2], then no process q that enters the waiting room at

some step iq ∈ [i1, i2] (i.e., q reaches line 5 at step iq), enters the CS in H [iq, i2].

Proof. Assume that a process p starts ObtainTicket() before H [i1], and next finishes

ObtainTicket() after H [i2], i.e., p is continuously inObtainTicket() during H [i1, i2].

Process p will have finished its last call to Set .InsertSelf() (line 3) before H [i1] but

not started a call to Set .RemoveSelf() (line 7) before H [i2]. By Lemma 3.13, the

SpecialSet used by the algorithm satisfies Specification 1, and so any call by some other

process to Set .RemoveSelf() at line 7 that starts after H [i1] and finishes before H [i2]

(i.e., the call to Set .RemoveSelf() occurs entirely during H [i1, i2]) must return a value

different from ⊥.

Suppose, by way of contradiction, that there exists a process q that enters the waiting

room at some step iq ∈ [i1, i2] and enters the CS in H [iq, i2]. This implies that q fully

executes Set .RemoveSelf() (at line 7) in H [iq, i2]. By the argument in the preceding

paragraph, q’s invocation of Set .RemoveSelf() must return a value v 6= ⊥. Process q
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subsequently adds v to the priority queue with a dummy ticket at line 9. Let i′q be an

index such that H [i′q] is the state immediately after q does this. At state H [i′q], a dummy

ticket exists in the priority queue. We claim that this holds for every subsequent state

until after p finishes executing ObtainTicket():

Claim 3.16.1. A process with a dummy ticket exists in the priority queue in every state

in H [i′q, i2].

Proof. Suppose, by way of contradiction, that there is an index is ∈ [i′q, i2] such that no

dummy ticket is in the priority queue in state H [is], and assume H [is] is the first such

state. The step immediately before this state must have been taken by some process

r, which removes the last dummy ticket in the priority queue at line 10. Process r’s

last execution of Set .RemoveSelf() at line 7 prior to this must have started after

H [i′q] and ended before H [is], and hence occurred entirely during H [i1, i2]. This and the

argument in the first paragraph of the proof of this lemma imply that r’s last execution

of Set .RemoveSelf() returned some value r′ 6= ⊥, which is added by r to the priority

queue with a dummy ticket at line 9.

By Specification 1 and Lemma 3.13, the call to Set .RemoveSelf() by r does not

return r, and so r 6= r′. This implies that the entry that r added to the priority queue

at line 9 is different from the entry that r removed from the priority queue at line 10.

In turn, this implies that a dummy ticket exists in the priority queue after r executes

line 10. This contradicts that there is no dummy ticket in the priority queue after r

executes line 10.

After q adds v to the priority queue with a dummy ticket, it removes any dummy

ticket associated with itself at line 10. At this point, q is no longer in Set , and so by

Lemma 3.13 and Specification 1, any call to Set .RemoveSelf() cannot return q until q

starts Set .InsertSelf() in its next passage (if any). This implies that after q removes
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its dummy ticket at line 10, no process adds q to the priority queue with a dummy ticket

until after q executes through the CS.

By the assumption that q enters the CS in H [iq, i2], q must read Head [q] = true

at line 15 in H [i′q, i2]. Process q sets Head [q] = false at line 6, and so some process r

must set Head [q] = true after this. There are two places where this can occur: either at

line 13 or at line 22. Both of these lines are protected by a lock that q occupies when

it executes line 6, and so the earliest r sets Head [q] = true is after q executes line 10.

Whichever line r executes to set Head [q] = true (line 13 or line 22), r has to discover

q as the head of the priority queue in its preceding call to Q .FindMin() (line 12 or

line 20, respectively). This call also occurs after q executes line 10. By Claim 3.16.1, a

dummy ticket exists in the priority queue in every state in H [i′q, i2], and so r’s call to

Q .FindMin() returns the id of a process that has a dummy ticket in the priority queue.

However, as r’s call to Q .FindMin() occurs after q executes line 10, it follows from the

preceding paragraph that process q is not in the priority queue with a dummy ticket

during r’s call to Q .FindMin(). Thus r’s call to Q .FindMin() does not return q, which

is a contradiction.

The following lemma is a slightly stronger version of Condition 4 (b), which says that if

processes p and q are participating simultaneously and hold tickets tp and tq, respectively,

where tp⊳ tq, then q does not subsequently call DoneWithTicket() before p. We omit

the word “subsequently” in the following lemma.

Lemma 3.17. (Condition 4 (b)) Suppose processes p and q each execute a passage of the

algorithm in Figure 3.1. If processes p and q are participating simultaneously and hold

tickets tp and tq, respectively, where tp ⊳ tq, then q does not call DoneWithTicket()

before p.

Proof. Let H be any history generated by the algorithm in Figure 3.1. We prove the
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following statement, from which the lemma will follow: For any j ≥ 0, Condition 4 (b)

holds in H [0, j]. The proof is by induction on j. In the base case j = 0. No processes take

any steps in H [0, 0], and so Condition 4 (b) trivially holds in H [0, 0]. For the induction

hypothesis, let j ≥ 0 and assume that Condition 4 (b) holds in H [0, j]. This, along with

Lemmas 3.14, 3.15, and 3.18, imply that Condition 3 and all parts of Condition 4 hold

in H [0, j]. In turn, this, Theorem 3.3 and Theorem 3.4 imply that the ticket dispenser

implementation presented in [13] also satisfies Specifications 3, 4, and 5 in H [0, j]. If H

is finite and ends in state H [j] (or earlier), then we’re done. So assume that H does not

end at state H [j].

For the induction step, suppose, by way of contradiction, that Condition 4 (b) is not

true in H [0, j+1]. By the induction hypothesis, Condition 4 (b) is true in H [0, j], and so

the j’th step in the execution is the first step in the execution after which the condition

is violated. Consequently, the following facts are true: (i) there exist processes p and q

that simultaneously hold tickets tp and tq, respectively, in state H [j], (ii) tp ⊳ tq, (iii) p

is not executing DoneWithTicket() in state H [j], and (iv) in step j process q begins

executing DoneWithTicket() at line 19.

Recall that we established in the first paragraph that the ticket dispenser satisfies

Specifications 3, 4, and 5 in H [0, j], and by Lemma 3.13, the SpecialSet implementation

satisfies Specifications 1 and 2 throughout H , and hence H [0, j]. This, facts (i) and

(ii) above, and Specification 4 (with the roles of p and q interchanged, stated in the

contrapositive), imply that p starts its last execution of ObtainTicket() in H [0, j]

before q finishes its last execution of ObtainTicket() in H [0, j]. There are two cases to

consider: either q enters the waiting room after p finishes ObtainTicket(), or before p

finishesObtainTicket(). If q enters the waiting room after p finishesObtainTicket(),

then clearly q does not enter the CS before p finishes ObtainTicket(). In the latter

case, if q enters the waiting room before p finishes ObtainTicket(), i.e., while p is

executing inside ObtainTicket(), then by Lemma 3.16, q does not enter the CS before
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p finishes ObtainTicket(). Hence, in either case, in H [0, j], q does not enter the CS

before p finishes ObtainTicket().

In state H [j] p has not yet entered the CS — otherwise, because of the lock protecting

lines 17–22, and the fact that q begins executing DoneWithTicket() at line 19 in step

j (fact (iv) above), it must be the case that p finished DoneWithTicket() prior to

state H [j], contradicting the assumption that q calls DoneWithTicket() before p.

Furthermore, q does not enter the CS before p finishes ObtainTicket(), as shown in

the preceding paragraph. Therefore, at the earliest state after both p and q have finished

ObtainTicket(), p and q simultaneously hold their tickets tp and tq, and neither process

is in the CS. So, by the STFS property (Lemma 3.5), and the fact that tp ⊳ tq, it follows

that q does not enter the CS before p. By inspection of algorithm, we see that the CS

and DoneWithTicket() are part of the same locked segment of code. Therefore, we

conclude that q does not start executing DoneWithTicket() in the j’th step unless p

finishes executing DoneWithTicket() prior to the j’th step. This and fact (iv) above

contradict the fact that q calls DoneWithTicket() before p.

The following lemma is a slightly stronger version of Condi-

tion 4 (c), which says that if processes p and q are simultane-

ously inside ObtainTicket(), then q does not subsequently call

DoneWithTicket() before p completes ObtainTicket(). We omit the word

“subsequently” in the following lemma.

Lemma 3.18. (Condition 4 (c)) Suppose process p and q each exe-

cute a passage of the algorithm in Figure 3.1. If processes p and

q are simultaneously inside ObtainTicket(), then q does not call

DoneWithTicket() before p completes ObtainTicket().

Proof. Suppose process p and q participate simultaneously inside ObtainTicket() at

line 4. By Lemma 3.16, neither process can execute through the CS in its current passage
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until both processes have finished executing ObtainTicket() in their current passages.

This, and the fact that a process does not invoke DoneWithTicket() at line 19 until

after it executes through the CS, imply that q does not call DoneWithTicket() before

p completes ObtainTicket().

Lemma 3.19. The ticket dispenser implementation presented in [13] satisfies Specifica-

tions 3, 4, and 5 when used by the algorithm in Figure 3.1.

Proof. Lemmas 3.14, 3.15, 3.17, and 3.18, imply that Condition 3 and all parts of Condi-

tion 4 are satisfied when the ticket dispenser presented in [13] is used by our algorithm.

Hence, by Theorem 3.3 and Theorem 3.4, the ticket dispenser implementation presented

in [13] satisfies Specifications 3, 4, and 5 when used by our algorithm.

Theorem 3.20. The FCFS ME algorithm in Figure 3.1, in conjunction with the

SpecialSet and ticket dispenser implementations presented in [13], satisfies FCFS, lockout

freedom, mutual exclusion, and bounded exit.

Proof. By Lemma 3.13, the SpecialSet implementation presented in [13] satisfies Speci-

fications 1 and 2, and by Lemma 3.19, the ticket dispenser implementation presented in

[13] satisfies Specifications 3, 4, and 5. This and Theorem 3.11 imply the result.

3.4.3 RMR Complexity

Theorem 3.21. The RMR complexity of the mutual exclusion algorithm in Figure 3.1,

when used in conjunction with the SpecialSet and ticket dispenser presented in [13], is

O(min(c, logN)) in both the CC and DSM models, where c denotes point contention.

Proof. By Lemma 3.13 and 3.19, the SpecialSet and the ticket dispenser presented in [13]

satisfy Specifications 2 and 5 when used by ME algorithm in Figure 3.1. This implies

that the step complexity of the SpecialSet and ticket dispenser are both O(min(c′, logN)),
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where c′ is the maximum number of processes participating simultaneously. The param-

eter c′ is at most c, the point contention, and so the step complexity (hence RMR com-

plexity) of the SpecialSet and ticket dispenser is O(min(c, logN)). The auxiliary mutual

exclusion algorithm used at lines 5, 14, 16, and 23 has RMR complexity O(min(c, logN))

provided that an algorithm such as Kim and Anderson’s is used [30]. The priority queue

Q is accessed sequentially, and so it is possible to implement with step complexity O(log c)

using elementary data structure techniques.

The busy-wait loop at line 15 must be analyzed separately for the CC and DSM

models. In the DSM model, this loop incurs zero RMRs because process p only accesses

Head [p], which is allocated in p’s local memory module. In the CC model, this loop costs

at most two RMRs. The first one occurs when p loads Head [p] into its local cache upon

writing Head [p] := false at line 6. The second one occurs as soon as another process

writes Head [p], and then p reads the value written. Following the second RMR, p breaks

out of the busy-wait loop because the last write to Head [p] must have occurred at line 13

or 22, and assigned the value true.

Finally, the remaining lines of the ME algorithm complete in O(1) steps. Thus, the

ME algorithm has RMR complexity O(min(c, logN)) per passage, as wanted.



Chapter 4

FCFS Abortable ME and Group ME

In this chapter we present a transformation that converts an arbitrary abortable ME

algorithm into an FCFS abortable ME algorithm. The transformation has the following

properties: it uses only reads and writes, and makes O(N+f(N)) RMRs in both the CC

and DSM models, where f(N) is the RMR complexity of the abortable ME algorithm.

This transformation, in conjunction with Lee’s abortable ME algorithm [15], yields the

first known FCFS abortable mutual exclusion algorithm that uses only reads and writes.

4.1 High-level Description

The transformation is presented in Figure 4.1. The trying, exit, and abort protocols of the

abortable ME algorithm used in the transformation are denoted by MutexTrying(),

MutexExit(), and MutexAbort(), respectively. We assume that the abortable ME

algorithm satisfies mutual exclusion, deadlock freedom, bounded exit, and bounded abort,

and has RMR complexity f(N). The transformation defines one abort point at line 33,

at which a process can choose to start executing the abort protocol, and we also assume

at least one additional abort point is defined by the abortable ME algorithm inside

MutexTrying(). (Note that we label line 34 as an abort point, although this is only

53
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Figure 4.1: Transformation to FCFS abortable ME for process p ∈ {1, ..., N}

shared variables:
Request : array[1..N] of boolean init false
Barricade: array[1..N][1..N] of boolean

(In the DSM model, Barricade[p][j ] and Request[p] are local to process p ∀j)

private variables:

predecessor set : set of integer

loop25

NCS26

predecessor set := ∅ // Doorway begins.27

foreach j ∈ {1..N} do28

Barricade[p][j ] := true29

if Request[j ] then predecessor set := predecessor set ∪ {j}30

Request[p] := true // Doorway ends.31

foreach j ∈ predecessor set do32

await ¬Barricade[p][j ] // Abort point.33

MutexTrying() // Abort point.34

CS35

MutexExit()36

Request[p] := false37

for j ∈ {1..N} do38

Barricade[j ][p] := false39

end loop40

abort protocol:

if aborted at an abort point of MutexTrying() then41

MutexAbort()42

Request[p] := false43

for j ∈ {1..N} do44

Barricade[j ][p] := false45
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to signify that there is an abort point within MutexTrying(). In particular, we do not

mean that a process can abort at an arbitrary point in MutexTrying().)

The transformation works as follows. When a process p leaves the NCS, it starts

by executing the doorway, which consists of lines 27..31. Process p first determines the

set of processes that must precede it when entering the CS (lines 28..30). This is the

set of processes that have already completed the doorway but have not yet entered the

CS or aborted. As p builds this “predecessor” set, it also enables a barricade variable

Barricade[p][j ] for every process j (line 29). This variable is local to p in the DSM model

and will be used later while waiting for processes in the predecessor set to finish the CS.

The final thing that p does in the doorway is to set its request flag, Request[p], to be

true, so that other processes know that it has finished the doorway.

The FCFS property states that if a process q completes the doorway before a process p

begins the doorway, then p cannot enter the CS before q enters the CS or aborts its entry

attempt. To ensure this, process p busy-waits until all the processes in the predecessor

set have finished the CS or aborted (lines 32..33).

Any processes that are in the doorway concurrently with p and are not added to

p’s predecessor set may try to enter the CS at the same time as p. To enforce mutual

exclusion in this case, the CS is protected by an abortable mutual exclusion algorithm.

After p executes MutexTrying() (line 34), it enters the CS.

After leaving the CS, p executes its exit protocol (lines 36..39). This consists of

executing MutexExit() (line 36), and then resetting its request flag to indicate that it

has finished the CS (line 37). Finally p scans through all the processes in the system,

resetting barricade variables (lines 38..39) so that any processes waiting for p (at line 33)

may advance.

The abortability feature of this algorithm allows a process to abort its attempt to

enter the CS while waiting at line 33 or while at an abort point in MutexTrying(). The

abort protocol is defined in lines 41..45 of Figure 4.1. If a process decides to abort its entry
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attempt at line 33, it simply needs to execute lines 43..45. If p aborts its entry attempt

while executing MutexTrying(), it additionally needs to execute MutexAbort()

(line 42) at the beginning of the abort protocol.

4.2 Proof of Correctness

In this section we prove that the FCFS abortable ME algorithm that results from the

transformation is correct and has RMR complexity O(N + f(N)).

Lemma 4.1. The algorithm in Figure 4.1 satisfies the mutual exclusion property.

Proof. This follows from the fact that the CS is surrounded by trying and exit protocols

(MutexTrying(),MutexExit()) of the abortable ME algorithm (lines 34 and 36).

Lemma 4.2. The algorithm in Figure 4.1 satisfies the FCFS property.

Proof. Assume that a process p finishes the doorway before a process q starts it, and that

p and q do not abort their entry attempt. Suppose, by way of contradiction, that q enters

the CS before p. By this and inspection of the algorithm, it follows that process p sets

Request[p] = true at line 31 before q begins the doorway. Moreover, process p does not set

Request[p] = false until line 37, after the CS. These preceding facts and the assumption

that q enters the CS before p imply that Request[p] = true is invariant between the time

q starts the doorway to when q enters the CS. This means that in iteration j = p of the

loop at line 28, q reads Request[p] = true at line 30. Hence, q adds p to its predecessor

set at line 30 in the doorway.

In iteration j = p of the loop at line 28, process q sets Barricade[q ][p] = true at

line 29. The only process that can set Barricade[q ][p] to false is process p, in its exit

(or abort) protocol, in the loop at line 38 (or line 44). By this, the assumption that p

finishes the doorway before q starts it, and the assumption that q enters the CS before p,

it follows that from the time that q sets Barricade[q ][p] = true to the time when p enters

the CS, Barricade[q ][p] = true is invariant.
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Since q adds p to its predecessor set in the doorway, q busy-waits at line 33 (in iteration

j = p) until Barricade[q ][p] = false. However, we showed in the preceding paragraph that

Barricade[q ][p] = true is invariant until p enters the CS. This means that q cannot enter

the CS before p, contradicting the assumption that it does.

Lemma 4.3. The algorithm in Figure 4.1 satisfies the bounded exit property.

Proof. By the bounded exit property of the abortable ME algorithm, and inspection of

the algorithm in Figure 4.1, it follows that the exit protocol, which consists of lines 36..39,

finishes after a bounded number of steps. Therefore, the algorithm satisfies the bounded

exit property.

Lemma 4.4. The algorithm in Figure 4.1 satisfies the bounded abort property.

Proof. By inspection, a process can reach line 33, an abort point, in a bounded number of

its own steps from anywhere in lines 27..32. Furthermore, by assumption, the abortable

ME algorithm satisfies bounded abort. Therefore, the following two facts hold: (i) if a

process is in the trying protocol and it cannot enter the CS in a bounded number of its

own steps, then it can reach an abort point in a bounded number of its own steps; and (ii)

a process can execute MutexAbort() in a bounded number of its own steps. In turn,

point (ii) and inspection of the algorithm in Figure 4.1, imply that the abort protocol

(lines 41..45) finishes after a bounded number of a process’s own steps. Therefore, the

algorithm satisfies the bounded abort property.

Lemma 4.5. The algorithm in Figure 4.1 satisfies the deadlock freedom property.

Proof. Suppose, by way of contradiction, that the algorithm does not satisfy deadlock

freedom. This implies that there exists an execution history in which a process gets stuck

forever in the trying protocol and a point in the history after which no process executes

through the CS. By inspection, the only place in the trying protocol where a process can

potentially be stuck forever is at line 33, or in MutexTrying().
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Claim 4.5.1. No process can be stuck forever in the method MutexTrying().

Proof. Suppose, by way of contradiction, some process p is stuck forever in

MutexTrying(). By assumption, the abortable ME algorithm satisfies deadlock free-

dom, which says that if a process is in MutexTrying() then some process eventually

enters the CS. This, and our assumption that p is stuck forever in MutexTrying(),

implies that there is some process that executes through the CS infinitely often. In

turn, this contradicts that there is a point in the history after which no process executes

through the CS.

Claim 4.5.2. No process can be stuck forever at line 33.

Proof. Suppose, by way of contradiction, that some process p is stuck forever at line 33.

Assume, without loss of generality, that of all the processes that get stuck forever at

line 33 in the execution, p is the one that executes line 31 the earliest.

Since process p is stuck forever at line 33, there exists some iteration j = q of the

loop at line 32 past which p does not advance. This implies that q ∈ p.predecessor set ,

and so p must have read Request[q ] = true when it last executed line 30 so that it could

add q to p.predecessor set at line 30.

Let t1 be the last step in the history at which p executes line 29 (setting

Barricade[p][q ] = true), and t2 be the next step after t1 at which p executes line 30

(reading Request[q ] = true).

The only place in the algorithm where Barricade[p][q ] is set to true is at line 29 (for

iteration j = q), and this can only be done by process p. The only place in the algorithm

where Barricade[p][q ] is set to false is at line 39 (for iteration j = p) and this can only be

done by process q. Therefore, if q sets Barricade[p][q ] = false at line 39 after t1 (i.e., the

step at which p sets Barricade[p][q ] = true for the last time), then Barricade[p][q ] = false

holds from that point until the end of the history. Process p, however, does not advance

past iteration j = q of the loop at line 32, and so p reads Barricade[p][q ] = true infinitely
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often at line 33. This implies that q cannot execute line 39 at any point after t1. Step t2

happens after t1, and so q cannot execute line 39 at any point after t2

Furthermore, p reads Request[q ] = true at line 30 (at step t2), and so it must be the

case that q@{32..37} holds in the state immediately before t2. This, combined with the

preceding fact that q cannot execute line 39 at any point after t2, implies that after t2,

q must be stuck forever somewhere in lines 32..37, or in the abort protocol. Process q

cannot be stuck forever in the exit protocol or the abort protocol since the algorithm

satisfies bounded exit and bounded abort. Process q cannot be stuck forever in the CS

since we assume that processes do not crash and that the CS is finite. By claim 4.5.1, q

cannot be stuck forever in MutexTrying(). The only remaining place where q can be

stuck forever is at line 33. However, since p reads Request[q ] = true at line 30 (at step t2),

this implies that q executes line 31 before p does. This contradicts our assumption that

of all the processes that get stuck forever at line 33, p is the one that executes line 31

the earliest.

Recall that the only place in the trying protocol at which a process can get stuck

forever is at line 33, or in MutexTrying(). By Claim 4.5.1 and Claim 4.5.2, however,

no process can be stuck forever at these places. Therefore, there exists no process that

is stuck forever in the trying protocol, contradicting that there is such a process.

Lemma 4.6. The algorithm in Figure 4.1 satisfies the lockout freedom property.

Proof. This lemma follows immediately from the fact that the algorithm satisfies FCFS

(Lemma 4.2) and deadlock freedom (Lemma 4.5).

Lemma 4.7. The algorithm in Figure 4.1 has RMR complexity O(N + f(N)) in the CC

(resp. DSM) model, where f(N) is the RMR complexity of the abortable ME algorithm

in the CC (resp. DSM) model.

Proof. By inspection, there are O(N) RMRs made in the doorway. Furthermore, by

inspection, there are O(N + f(N)) RMRs made in the exit protocol and abort protocol.
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The only part of the algorithm where more than O(N + f(N)) RMRs may be made is

in lines 32..34. The RMR complexity of the abortable ME algorithm is f(N) in the CC

(resp. DSM) model, and so the total number of RMRs made at line 34 is O(f(N)). We

now show that O(N) RMRs are made in the loop at line 32 in both the CC and DSM

models.

We first consider the CC model. The only process that sets Barricade[p][j ] = true is

process p at line 29. Therefore, while process p is at line 33, no other process will write

the value true into Barricade[p][j ]. This implies that if p makes two RMRs while waiting

on the variable Barricade[p][j ], p is guaranteed that the value it reads the second time is

false, and p will advance to the next iteration of the loop at line 32. Therefore the total

number of RMRs made in the loop at line 32 is O(N).

In the DSM model, Barricade[p][j ] is local to process p for all j, and so no RMRs are

made at line 33.

Theorem 4.8. The algorithm in Figure 4.1 satisfies mutual exclusion, FCFS, bounded

exit, bounded abort, and lockout freedom. Furthermore, the algorithm has O(N + f(N))

RMR complexity in the CC (resp. DSM) model, where f(N) is the RMR complexity of

the abortable ME algorithm.

Proof. The theorem follows from Lemmas 4.1, 4.2, 4.3, 4.4, 4.6, and 4.7.

Theorem 4.9. There exists an FCFS abortable mutual exclusion algorithm that uses

only reads and writes, and has O(N) RMR complexity.

Proof. Lee’s abortable mutual exclusion algorithm [15, 35] uses only reads and writes

and has RMR complexity O(logN) in both the CC and DSM model. If we instantiate

the transformation in Figure 4.1 using this algorithm, then by Theorem 4.8, we arrive at

an algorithm with the desired properties.
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4.3 Group Mutual Exclusion

By Theorem 4.9 there exists FCFS abortable mutual exclusion algorithm that has O(N)

RMR complexity in both CC and DSM models, and uses only reads and writes. This

algorithm can be used as a building block for a new local-spin group mutual exclusion

algorithm that also uses only reads and writes. This is done using the transformation

presented by Danek and Hadzilacos [14] for the DSMmodel. By using the FCFS abortable

mutual exclusion algorithm from this chapter in that transformation, we end up with the

first local-spin group mutual exclusion algorithm that uses only atomic reads and writes.

The resulting GME algorithm has O(N) RMR complexity in the DSM model, which is

asymptotically optimal [14]. We summarize these results in the following theorem.

Theorem 4.10. There exists a group mutual exclusion algorithm that uses only reads

and writes, and has O(N) RMR complexity in the DSM model.

Note that the preceding result also applies to the CC model, although the transfor-

mation in [14] was only studied in the DSM model.
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The k-Bakery

In this chapter we present the first known local-spin k-exclusion algorithms that use only

atomic reads and writes. All algorithms, with the exception of one, have O(N) RMR

complexity in both the CC and DSM models, and the high-level structure of all the

algorithms is inspired by Lamport’s famous Bakery algorithm. We additionally present

local-spin k-exclusion algorithms, also having O(N) RMR complexity in both the CC

and DSM models, that require only the use of non-atomic reads and writes.

We start by reviewing the Bakery algorithm briefly, as its structure is the basis for the

algorithms in this chapter. After this, we provide a conceptual overview of our different

k-exclusion algorithms, after which we describe the asynchronous shared-memory model

for non-atomic reads and writes. We then present a sequence of k-exclusion algorithms,

starting with one that is conceptually very simple, gradually presenting more complex and

powerful algorithms as we progress through the sequence, and ending with a k-exclusion

algorithm that is conceptually the most complex but also the most “feature-rich” in

terms of the set of properties that it satisfies. We close this chapter by summarizing the

different techniques and mechanisms used by our k-exclusion algorithms.

62
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5.1 Lamport’s Bakery Algorithm

Lamport’s Bakery algorithm [32] is a non-local-spin FCFS mutual exclusion algorithm

that is correct even when reads and writes are non-atomic. It is given in Figure 5.1. The

name of the algorithm arises from the fact that processes behave like people waiting in

line at a bakery. Each process chooses a ticket and then waits for its turn to be served

by the CS.

The algorithm uses two shared arrays: Doorway, and Ticket . A process p sets

Doorway[p] to be true at line 48 to indicate to other processes that it has started the

doorway, and then sets it to false at line 50 when it finishes the doorway. At line 49 of

the doorway, process p chooses a ticket used to indicate its order of priority to enter the

CS. In the waiting room, process p waits for each other process q to finish the doorway

(line 52), and then waits until it has priority over q to enter the CS (line 53). Process p

has priority over q to enter the CS if either q is not requesting entry into the CS (indicated

by Ticket [q] = 0) or q’s ticket is larger than p’s ticket (using process ids to break ties

between equal tickets). When a process finishes the CS, it resets its ticket to 0, indicating

that it is returning to the NCS. Note that despite the fact that a process resets its ticket

to 0 in the exit protocol, tickets can grow without bound in this algorithm.

5.2 Conceptual Overview of k-Bakery Algorithms

The high-level structure of our k-exclusion algorithms is given in Figure 5.2. In the

doorway, a process first acquires a ticket that is larger than any tickets currently held

by other processes. It then waits until there are fewer than k processes with smaller

tickets. Once this is the case, the process can safely enter the CS. Finally, the process

discards its ticket in the exit protocol. Notice that this is nearly the same as the high-

level structure of Lamport’s Bakery algorithm. The only difference is that on line 60,
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Figure 5.1: Lamport’s Bakery algorithm for process p ∈ {1, ..., N}

shared variables:
Doorway: array[1..N ] of boolean init all false
Ticket : array[1..N ] of N init all 0

loop46

NCS47

Doorway[p] := true48

Ticket [p] := 1 + max(Ticket [1],Ticket[2], ...,Ticket [N ])49

Doorway[p] := false50

for i := 1 to N do51

await Doorway[i] = false52

await Ticket [i] = 0 ∨ (Ticket[i], i) ≥ (Ticket [p], p)53

CS54

Ticket [p] := 055

end loop56

in Lamport’s Bakery algorithm, instead of waiting until there are fewer than k smaller

tickets, a process simply waits until there are no smaller tickets.

Figure 5.2: High-level structure of k-exclusion algorithms

loop57

NCS58

Acquire the next largest ticket // Doorway59

Wait until there are fewer than k smaller tickets60

CS61

Discard ticket62

end loop63

There are, of course, many details left undefined by Figure 5.2: How does a process

acquire a ticket? How does a process check if there are fewer than k smaller tickets?

How does a process discard a ticket? These details will be described in the coming

sections where we actually present our algorithms. The goal in this section, however, is

to provide a conceptual overview of our algorithms, highlighting their commonalities and

their differences.

All of our algorithms satisfy k-exclusion, starvation freedom, bounded exit, and k-
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FCFS. They also all have O(N) RMR complexity in both the CC and DSM models, with

the exception of the algorithm in Section 5.5, which we discuss in more detail below. The

main differences between our algorithms are with respect to the following characteristics:

1. (Ticket Resetting) When a process discards a ticket, does it reset its ticket to

zero, as in Lamport’s Bakery algorithm, or not?

2. (Synchronization Primitives) Does the algorithm require atomic reads and

writes, or does it work with even non-atomic reads and writes?

3. (FIFE) Does an algorithm satisfy the FIFE property?

Ticket resetting deserves further explanation. In the Bakery algorithm, when a pro-

cess “discards” its ticket, it does so by setting its entry in the Ticket array to be 0

(line 55). In contrast, in some of our algorithms, a process discards its ticket in a dif-

ferent manner that does not involve resetting ticket values. This results in algorithms

in which tickets grow without bound in an unrestricted manner. In a number of our

other algorithms, tickets are reset to 0 in the exit protocol. Just as in Lamport’s original

Bakery algorithm, tickets can still grow without bound, but this happens only in certain

situations where some process is always outside of the NCS. In particular, in the algo-

rithms where tickets are reset, if there is a period of “quiescence” in which all processes

are in the NCS, all variables will be reset to their initial values.

Ticket resetting is a desirable feature since it limits the situations under which vari-

ables can grow without bound. It turns out, however, that it is more difficult to imple-

ment our k-exclusion algorithms with this feature than without. As such, we begin our

presentation with simpler algorithms that do not have this feature.

The first k-exclusion algorithm that we present is given in Section 5.4, and is con-

ceptually the simplest. This algorithm does not reset tickets, requires atomic reads and

writes, and does not satisfy FIFE. (We temporarily defer a description of the algorithm

in Section 5.5.) The algorithm in Section 5.6 additionally satisfies FIFE, and is further
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embellished in Section 5.7 to also work with non-atomic reads and writes. In Sections 5.8

- 5.10 we present our ticket-resetting algorithms. We begin with a relatively simple k-

exclusion algorithm that resets tickets, uses only non-atomic reads and writes, and does

not satisfy FIFE. Modifying this algorithm to satisfy FIFE turns out to require a number

of complex mechanisms that are easier to describe if we first present a version of the al-

gorithm that uses atomic reads and writes. In Section 5.9 we present such an algorithm:

it resets tickets, uses atomic reads and writes, and satisfies FIFE. Finally, we embellish

this algorithm in Section 5.10 to arrive at a k-exclusion algorithm that resets tickets, uses

only non-atomic reads and writes, and satisfies FIFE.

The algorithm presented in Section 5.5 is nearly identical to the one given in Sec-

tion 5.4, except that it is local-spin only in the CC model and is more space-efficient:

it requires Θ(N) shared variables, as opposed to Θ(N2) shared variables, which is the

space requirement of the other algorithms in this chapter. We did not identify “space-

efficiency” above as one of the distinguishing characteristics of the algorithms, since it

turns out that the techniques used in all the algorithms in Section 5.6 and later require

Θ(N2) shared variables.

The preceding discussion is summarized in Table 5.1.
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Algorithm FIFE NARW1 TR1 O(N) RMRs (DSM) O(N) RMRs (CC)

Section 5.4 X X

Section 5.5 X

Section 5.6 X X X

Section 5.7 X X X X

Section 5.8 X X X X

Section 5.9 X X X X

Section 5.10 X X X X X

Table 5.1: Summary of k-exclusion algorithms.

5.3 Asynchronous Shared-Memory Model For Non-

atomic Reads and Writes

The model that we use for non-atomic reads and writes is similar to the atomic read

and write model described in Chapter 2, except that when a process takes a step, the

step is not a single “indivisible” read or write. Instead, a step is either the invocation

of a read or write, or the response to a read or write. Intuitively, a read or write takes

place during the time between an invocation and its corresponding response, and if a

read of some variable overlaps the write of the same variable, then the value returned

by the read is arbitrary. Also, as a result of this change, there is no longer a notion of

a well-defined global state that exists before and after each step, although each process

still has a well-defined private state before and after each step. This model has some

high-level similarities to mutli-reader single-writer safe registers as defined by Lamport

[34], however Lamport did not consider multiple concurrent writers, and our model also

1NARW = Non-atomic Reads and Writes; TR = Ticket Resetting
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incorporates process crashes.

A system consists of a set of N processes and a set of shared variables to which

processes have access. Each shared variable in the system has an initial value that

corresponds to the value it is assigned before being accessed by any processes. A process

is an automaton that has a private state, which is reflected by the values of a set of

private variables (i.e., variables to which only that process has access). As elsewhere in

this thesis, we define processes informally using pseudocode.

The initial state of the system consists of the assignment of initial values to shared

variables and the private state of each process prior to any process taking any steps.

A step by a process consists of a private computation, along with exactly one of the

following: (i) the invocation of a read or write operation on a shared variable, (ii) a

response from a read or write operation on a shared variable, or (iii) a crashing response

from a read or write operation on a shared variable. We explain why we need to define

crashing response steps in addition to (ordinary) response steps below, after we first

define how we model executions.

An execution (or execution history) is modelled by a sequence of process steps. We

say that an execution is valid if it satisfies certain properties:

• P1: The first time a process takes a step, the step is an invocation.

• P2: If a step t by a process p is an invocation, and t is not the process’s first step,

then the last step taken by p before t is a response.

• P3: If a step t by a process p is a (possibly crashing) response to a read (resp.,

write) operation on some shared variable X , then the last step taken by p before t

is an invocation of a read (resp., write) operation on X .

• P4: If a history H is infinite, and p takes some finite (non-zero) number of steps

in H , then the last step taken by p is a response.
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• P5: If a step t by a process p is a crashing response, then p takes no steps after t.

Intuitively, properties P1, P2 and P3 ensure that the sequence of steps taken by

a specific process must be an alternating sequence of invocation and response steps.

Property P4 ensures that in any infinite execution, every invocation eventually receives

a response (possibly a crashing response), and property P5 ensures that a process takes

no steps after a crashing response step.

For an execution to be valid, the values returned by read operations in response steps

must also obey certain properties. To define these properties precisely, we first need to

define some notation:

For any execution H , and any steps a and b in H , we write a → b if a happens before

b in H . An operation A by a process p is a non-empty subsequence of steps in H taken

by process p, starting with an invocation, such that if a, b are steps in A, c is a step in

H , and a → c → b, then c is also a step in A. We say that A is an incomplete operation

if the last step in A is an invocation step, and otherwise say it is a complete operation.

(For this section, whenever we refer to an operation, we mean one that can be either

complete or incomplete. However, in the rest of the chapter, in the proofs of correctness

for our algorithms, whenever we refer to an operation, unless otherwise noted, we mean

one that is complete.)

For any operations A and B, we write:

• A → B iff A is finite, the last step a ∈ A is a response step, and for the first step

b ∈ B, a → b

• A 99K B iff B 6→ A

There are certain properties that hold for the → and 99K relations, which we use

throughout the thesis. These properties follow from the above definitions. For any

operations A, B, C:
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• → is irreflexive and transitive, i.e., a partial order.

• If A → B then A 99K B

• If A → B 99K C or A 99K B → C then A 99K C

• if A → B 99K C → D then A → D.

• if A and B are complete operations by the same process, with no steps in common,

then A → B or B → A. (Intuitively, complete non-overlapping operations by the

same process can be totally ordered.)

For any operations A, B, we write A ⊆ B iff A and B are operations executed by the

same process, and for all steps a ∈ A, it is also true that a ∈ B.

We say that operations are concurrent if A 99K B and B 99K A. A read operation R

on a shared variable X by a process p is an operation consisting of at most two steps:

the invocation of the read, and (possibly) its corresponding response. A write operation

W on a shared variable X is defined analogously. We say that a write operation is a

crashing write if it contains a crashing response step.

For an execution to be valid, the following properties about read and write operations

must be satisfied for every shared variable X in the system:

• P5: Let R denote a complete read of X such that for all writes W to X , R → W .

Then R must read the initial value of X . (Intuitively, any read that precedes every

write to X must read X ’s initial value.)

• P6: Let R denote a complete read of X such that for all writes W to X , either

W → R or R → W . If there exists a write W ∗ to X such that

1. W ∗ is not a crashing write, and

2. W ∗ → R, and

3. for all writes W ′ 6= W ∗ to X , either R → W ′ or W ′ → W ∗
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then R must read the value written by W ∗. (Intuitively, any complete read of X

that is not concurrent with a write to X must read the value written by the “latest”

write to X , unless the latest write to X was concurrent with some other write to

X or was a crashing write.)

• P7: Let R and R′ denote any distinct complete reads of X such that R → R′ and

for every write W on X either W → R or R′ → W , then R and R′ return the same

value. (Intuitively, complete reads that are not concurrent with any write and that

do not have any write between them must return the same value.)

The reason for defining a crashing response step in addition to an ordinary response

step can now be explained. Intuitively, processes may crash during an execution. We say

that p crashes in an infinite execution H if p stops taking steps in H while outside the

NCS. Property P4 guarantees that in any valid infinite execution, even in one in which

processes crash, after a process takes an invocation step, there will be a corresponding

response. This is somewhat counterintuitive to the notion of a process crashing: we

expect that when a process stops taking steps (and hence crashes) that the last step can

be either an invocation or response. Suppose for the moment that this is the case, and

that the last step taken by a process in an infinite execution could be an invocation. In

this case, defining P6 becomes problematic. In P6, we want to be able to say that a

read operation on variable X that is not concurrent with any writes to X will read the

value “last written” to X unless the latest write to X was concurrent with some other

write to X . If the last step by a process before it crashes is the invocation of a write on

a variable X , then that write will appear to other processes as a write that starts but

never finishes, and thus will be concurrent with every subsequent read and write of X .

As a result, a process crashing may interfere with other operations indefinitely. Again,

this is counterintuitive: after a process crashes, it should not be able to interfere with

other operations indefinitely. To resolve this, we use the notion of crashing responses.
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This immediately solves the problem of incomplete operations interfering with other

operations indefinitely. Also, it allows us to model the intuition that if a process crashes

after invoking an operation, it should not be forced to “properly” complete the operation.

Lastly, for an execution to be valid, the execution must also satisfy the following

property:

• P8: The sequence of steps taken by a process p, and the private state of p before

and after each step, must be consistent with the automaton for process p, which is

defined informally using pseudocode.

Property P8 can be made more precise as follows. For any history H and any process

p, let H|p = t0, t1, t2, ... be the subsequence of steps in H taken by p, where tj is the j’th

step in this subsequence. The private state of p immediately preceding t0 is p’s initial

private state. Property P8 says that for each j ≥ 0, step tj depends on the private state

of p immediately preceding step tj and the pseudocode for p, and that the private state

of p immediately following step tj must be updated according to tj . In particular, if tj

involves any private computation, then the private state of p is updated according to

that private computation. If tj is an invocation, then the private state of p after tj must

be such that the next allowable step by p after tj is the response step that corresponds

to the invocation made in tj . If tj is a response step to a read, then the value returned

may (possibly) be assigned to one of p’s private variables in the private state of p after

tj . (Property P8 is essentially the analogue of validity as defined for the atomic model,

except that in the non-atomic model there is no global state as there is in the atomic

model.)

Henceforth, we assume that all executions that we are dealing with are valid. Also,

we assume that processes execute asynchronously, meaning that between any two steps

of some process in an execution history, there can be an arbitrary number of steps taken

by other processes.
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An algorithm is a way of specifying the system (i.e., it is a specification of the program

for each process in the system, and each variable’s initial value). An “execution of

an algorithm” or an “execution generated by an algorithm” is shorthand for saying an

execution of the system specified by the algorithm.

We say that a process i enters the CS when it takes its first invocation step in the

CS. We say that an operation A by a process i in a history H occurs as part of the CS

if each step in A is taken in the CS. We use similar terminology by substituting “CS” in

the preceding with TP, EP, NCS, doorway, or waiting room.

Much of our discussion on correctness properties in Section 2.2 carries over to this

model. More precise statements for the correctness properties of k-exclusion are as fol-

lows:

k-exclusion : KE(H): For any k+1 operations Ai (for i = 1..k+1) by distinct processes

in H , if each Ai occurs as part of the CS, then for at least one of these operations,

say Aj , Aj → Ai or Ai → Aj (for all i ∈ {1..N} \ {j}).

Starvation Freedom: SF(H): If H is infinite, at most k − 1 processes crash1 in H ,

there is an operation A by a process p in H that occurs as part of the TP, and p

doesn’t crash in H , then there exists an operation B by p in H that occurs as part

of the CS and A → B.

As discussed before, to avoid complexity in our proofs, when proving an algorithm

correct we generally use the less formal statements of its correctness properties with the

understanding that they have more precise counterparts of the style described above.

Also, we adopt the → and 99K notation in proofs of algorithms in this chapter that

are intended for the atomic read and write model. The semantics of → and 99K in the

atomic read and write model from Chapter 2 carry over naturally from the non-atomic

model. More precisely, given a history H in the atomic model, if ti is the i’th step in H ,

1Recall, we only count processes that crash outside of the NCS.
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and tj is the j’th step in H , where j > i, then ti → tj . An operation A by a process

is a non-empty contiguous subsequence of steps by the process in H . The relations →

and 99K are defined for operations in the atomic model as follows. For any operations A,

B, we write A → B iff A is finite, and for the last step a ∈ A and the first step b ∈ B,

a → b. We write A 99K B iff B 6→ A. The properties of the → and 99K relations, as

listed earlier for the non-atomic model, also hold in the atomic model.

5.3.1 RMRs in the Non-atomic Model

An RMR occurs when a process accesses the processor-to-memory interconnect. This

notion is made more precise by considering two types of shared-memory models: the DSM

model, and the CC model, both of which we defined earlier. As part of the description

of these models, we defined how and when an RMR occurs. The description that we

provided, however, was in the context of atomic reads and writes. We now revise these

descriptions in the context of non-atomic reads and writes.

It turns out that the description of the DSM model can remain unchanged. A process

makes an RMR whenever it accesses a shared variable that is stored in another process’s

memory module. This is not affected by the fact that reads and writes are no longer

atomic. The description of the CC model, however, does require some clarification.

In our earlier description of the CC model, a process p makes an RMR whenever

p reads a shared variable for the first time, p writes a shared variable, or p reads a

shared variable for the first time after another process writes the same variable. This is

poorly defined when using non-atomic reads and writes, as it is not clear whether a read

operation of some variable by a process will make an RMR as a result of a concurrent

write operation to the same variable. We clarify this issue as follows.

Let R be a read operation of a shared variable X by a process p, and let R̄ be the

set of all read operations R′ of X by p such that R′ → R, i.e., R̄ = {R′ : R′ → R}.

Furthermore, let W , if it exists, be the last write to X that finishes before R starts (i.e.,
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the response step of W is the last response step of a write to X that appears in the

history before the invocation step of R). We say that R makes an RMR iff one of the

following is true:

1. R̄ is empty; or,

2. W exists, and there does not exist R′ ∈ R̄ such that W → R′.

Intuitively, R makes an RMR if R is the first time p reads X , or if R is the first time

that p reads X after another process has finished writing X . This way of defining RMRs

in the non-atomic CC model may seem counterintuitive: a write operation should be able

to invalidate cached copies of a variable at any point between its invocation and response,

thereby causing concurrent reads of the same variable to make an RMR. In fact, if one

interprets cache invalidation as an “operation” that takes place non-atomically, then it

could be the case that for a single write of X , every read of X that is concurrent with

this write makes an RMR. Processes execute asynchronously in our model, and so there

are an unbounded number of operations by other processes between the invocation and

response of any write. This means that a single write can cause some other process to

make an unbounded number of RMRs. Using these semantics, it is clearly impossible for

any algorithm that uses non-atomic reads and writes to be local-spin in the CC model.

Another approach to defining RMRs in the CC model that may seem more reasonable

is as follows. Let W be a write operation of X , and let R̂ be the set of reads of X by

a process p that are concurrent with W (i.e., for each R ∈ R̂, R 99K W and W 99K R).

Suppose we allow some constant number of reads R ∈ R̂ to make an RMR. Intuitively,

this behaviour is more appealing than the definition we gave above, since it allows for a

write operation to invalidate cached copies of a variable some constant number of times

between its invocation and response. It turns out, however, that this definition does

not make a difference in terms of our RMR complexity results: Whether we use our

more restrictive definition, or if we allow a fixed number of cache invalidations to occur
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“during” a write operation, the RMR complexity of our algorithms is asymptotically the

same. This can easily be seen by observing that the definition of RMRs in this paragraph,

versus the restrictive definition above, increases the number of RMRs that a process can

make in a passage only by a constant factor. We thus use the more restrictive definition

of RMRs given above.

5.4 Local-spin k-Exclusion (Atomic RWs)

In Figure 5.3 we present a k-exclusion algorithm that has O(N) RMR complexity in the

CC and DSM models. The high-level structure of the algorithm is similar to Lamport’s

Bakery algorithm: processes choose a ticket in the first part of the trying protocol, and

then wait for processes with lower-numbered tickets to execute through the CS. There are

two main differences between our algorithm and Lamport’s algorithm. Firstly, processes

announce their ticket at the start of the trying protocol differently. Secondly, in our

algorithm a process does not have to wait for every process with a lower-numbered ticket

to finish the CS, but rather only waits until there are fewer than k processes with lower-

numbered tickets (line 70). We now explain the algorithm in more detail.

Processes use two shared arrays to communicate with each other: the Want array,

and the Ticket array. The Want array is used by processes to announce their wish to

enter the CS. In particular, the value stored in entry Want [p][q] is a “ticket value”, and it

indicates to process q whether p is trying to enter the CS. When a process p is in the NCS,

Want [p][q] = ∞, indicating that p does not want to enter the CS. When Want [p][q] = v

for some value v 6= ∞, then process p is outside of the NCS and is trying to enter the CS

with the ticket value v. Ticket values provide a rough guideline for the order in which

processes are admitted to the CS. Ticket values are stored and generated using the shared

array Ticket . We now explain how these shared arrays are employed in the trying and

exit protocols of the algorithm.



Chapter 5. The k-Bakery 77

The trying protocol (lines 66..72) consists of two parts: the doorway, and the waiting

room. The doorway consists of lines 66..67. In this part of the trying protocol, a process

first announces itself at line 66 to all other processes with the ticket it chose in its previous

passage (0 if it executed no previous passage). A process then chooses a new ticket at

line 67. Once a process is done the doorway, it announces the ticket it just chose to all

other processes at line 68.

One may wonder why it is not sufficient to simply start the trying protocol by choosing

a new ticket (line 67) and then announce it. This is due to a race condition that arises

otherwise, but we postpone discussion of this until after we explain the next part of the

algorithm.

After announcing its ticket, a process p initializes predecessor set to be the set of all

other processes in the system (line 69). The predecessor set is intended to approximate

the set of processes that are trying to enter the CS concurrently with p and that have

priority over p to enter the CS. We say that a process q has priority over p if q and p

choose tickets tq and tp and (tq, q) < (tp, p).

The purpose of lines 70..72 is to prevent a process p from entering the CS until enough

processes are eliminated from p’s predecessor set. To this end, p repeatedly checks the

state of all other processes still in its predecessor set in the loop at line 71. Once p detects

that a process q no longer has priority over it, p removes q from its predecessor set at

line 72.

When the size of p’s predecessor set goes below k, p enters the CS.

In the exit protocol (line 74), a process simply announces to all other processes that

it is returning to the NCS by setting the appropriate values in the Want array to ∞.

We now explain the race condition that arises if line 66 is removed from the algorithm.

If two processes p and q execute line 67 concurrently, the following may occur: q chooses

a smaller ticket than p, but does not yet announce the ticket at line 68. Process p then

races ahead of q into the waiting room. As q has not yet announced its ticket to p, p
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will see that Want [q][p] = ∞, and so p will remove q from its predecessor set. This is

premature on p’s part, since q actually has priority over p. When q executes the waiting

room, it also removes p from its predecessor set, since p has a larger ticket than q. It

is easy to see how this can lead to a violation of k-exclusion for k = 1. More elaborate

execution scenarios can be constructed in which k-exclusion is violated for k > 1.

The preceding scenario is avoided if q first announces the ticket it chose in its previous

passage. Since q, in its current passage, chooses a ticket smaller than p, the ticket q

announces at line 66 is also guaranteed to be smaller than p’s ticket. Moreover, by the

time p starts the waiting room, q will have finished line 66, otherwise q will choose a

ticket larger than p. Thus, when p executes the waiting room, it will not remove q from

its predecessor set prematurely.

Figure 5.3: (Atomic RWs) k-Exclusion algorithm for process p ∈ {1, ..., N}

shared variables:
Want : array[1..N ][1..N ] of N ∪ {∞} init all ∞
Ticket : array[1..N ] of N init all 0

(DSM model: Ticket [p], Want [i][p], are local to process p for all i)

private variables:

predecessor set : Set of N

loop64

NCS65

foreach i ∈ {1..N} \ {p} do Want [p][i] := Ticket [p]66

Ticket [p] := 1 + max(Ticket [1],Ticket[2], ...,Ticket [N ])67

foreach i ∈ {1..N} \ {p} do Want [p][i] := Ticket [p]68

predecessor set := {1..N} \ {p}69

while |predecessor set | ≥ k do70

foreach i ∈ predecessor set do71

if (Ticket [p], p) < (Want [i][p], i) then72

predecessor set := predecessor set \ {i}

CS73

foreach i ∈ {1..N} do Want [p][i] := ∞74

end loop75
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5.4.1 Proofs

Let Cp denote the operation in which process p chooses its ticket at line 67, and let EPp

denote the operation in which p executes its exit protocol at line 74. Note that these

operations consist of multiple reads and writes.

Lemma 5.1. Let p and q be distinct processes. If Cp → Cq, then tp < tq, where tp and

tq are the tickets chosen by p and q, respectively.

Proof. Process p finishes line 67 before q starts it, and so the value that q reads from

Ticket [p] at line 67 is no smaller than tp. This and inspection of line 67 imply that the

ticket tq that q chooses satisfies tq > tp.

As a corollary to the preceding lemma, we state its contrapositive:

Corollary 5.2. Let p and q be distinct processes, and suppose p and q choose tickets tp

and tq. If tq ≤ tp, then Cq 99K Cp.

Lemma 5.3. Let p and q be distinct processes, and suppose p and q choose tickets tp

and tq, respectively. If (tq, q) < (tp, p), then p does not remove q from p.predecessor set

before EP q starts.

Proof. Suppose, by way of contradiction, that p removes q from p.predecessor set at

line 72 before EP q starts. At line 72, p reads a value wq in Want [q][p] such that (tp, p) <

(wq, q) (denote this read operation R) before EP q starts. Process q writes into Want [q][p]

at most three times in its passage: at line 66 it writes the ticket t′q < tq that it chose

in its preceding passage (denote this write operation W1); at line 68 it writes tq (denote

this write operation W2); and finally, at line 74, it writes ∞ (denote this write operation

W3).

Claim 5.3.1. R → W3.

Proof. The claim follows from the following two facts: (i) R finishes before EP q starts,

i.e., R → EP q and (ii) W3 ⊆ EP q. (Claim 5.3.1)
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Claim 5.3.2. W1 → R.

Proof. By the assumption that (tq, q) < (tp, p), tq ≤ tp. This and Corollary 5.2 imply

that Cq 99K Cp. By inspection of the algorithm, W1 → Cq and Cp → R. Thus, W1 →

Cq 99K Cp → R, and so W1 → R. (Claim 5.3.2)

Since we are using atomic reads and writes, either R → W2, or W2 → R. We consider

these cases separately. In the first case, by Claim 5.3.2, W1 → R → W2. W1 and W2 are

successive writes into Want [q][p], and so R must read the value written by W1, namely

the ticket t′q < tq that q chose in its preceding passage. By assumption, (tq, q) < (tp, p),

which implies that tq ≤ tp; since t′q < tq, we have t′q < tp. That is, R must read a value

t′q such that t′q < tp. This contradicts that R reads a value wq such that (tp, p) < (wq, q),

i.e., wq ≥ tp.

In the second case, W2 → R. This and Claim 5.3.1 imply that W2 → R → W3. W2

andW3 are successive writes into Want [q][p] and so the value wq that R reads must be the

value tq written by W2, i.e., wq = tq. By assumption, (tq, q) < (tp, p), which contradicts

that (tp, p) < (wq, q).

Lemma 5.4. The algorithm in Figure 5.3 satisfies k-exclusion.

Proof. Suppose, by way of contradiction, that k + 1 processes are in the CS concur-

rently. Let Y be this set of processes, and let p be the process in Y with the largest

(ticket , process id) pair. By Lemma 5.3, when p executes the trying protocol, p does not

remove any process in Y from p.predecessor set before some process in Y starts the exit

protocol. This implies that the size of p’s predecessor set is at least k until after some

process in Y leaves the CS. Thus p cannot enter the CS until after some process in Y

leaves the CS, which contradicts that p is in the CS concurrently with all processes in

Y .

Lemma 5.5. The algorithm in Figure 5.3 satisfies starvation freedom.
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Proof. Suppose, by way of contradiction, that starvation freedom does not hold. Let

Y be the set of non-faulty processes that are stuck forever in the TP, and let p be the

process in Y with the smallest (ticket , process id) pair.

By inspection of the code, we see that p removes from its predecessor set any process

that it sees as having announced a larger (ticket , process id) pair or as having returned to

the NCS. This, the fact that process’ tickets increase monotonically, and the assumption

that p has the smallest (ticket , process id) pair of all the non-faulty processes that get

stuck forever, imply that eventually the only processes in p’s predecessor set are crashed

processes. However, there are at most k−1 crashed processes, and so p eventually enters

the CS, contradicting that p never enters the CS.

Lemma 5.6. The algorithm in Figure 5.3 satisfies the k-FCFS property.

Proof. Let Y be a set of processes such that |Y | = k, and assume all processes in Y

finish the doorway before a process p starts the doorway. Thus ∀q ∈ Y , Cq → Cp.

This and Lemma 5.1 (with the roles of p and q interchanged) imply that each process

in Y chooses a ticket strictly smaller than the ticket that p chooses. By Lemma 5.3,

during p’s execution of the trying protocol, p does not remove any process in Y from

p.predecessor set until at least one process in Y completes the CS. This implies that the

size of p.predecessor set will be at least k until some process in Y executes through the

CS. Process p does not enter the CS until the size of its predecessor set is less than k,

and so p does not enter the CS until some process in Y enters the CS.

Lemma 5.7. Let p and q be distinct processes. In the CC model, while p is executing

the loop at line 70, process p makes at most five RMRs reading Want [q][p] at line 72.

Proof. Suppose, by way of contradiction, that p makes six RMRs reading Want [q][p]

at line 72. Let R≤5 be the operation in which p makes the first five of these RMRs

to Want [q][p], and let R=5 ⊆ R≤5 be the operation in which p makes (only) its fifth

RMR reading Want [q][p]. Recall that in the CC model a process makes an RMR when
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it reads a variable for the first time, writes a variable, and whenever a process reads a

variable for the first time after another process has written that variable. During R≤5

(i.e., after R≤5 starts and before R≤5 finishes), q must update Want [q][p] at least four

times: p’s first RMR in R≤5 may happen because p does not have a copy of Want [q][p]

in its cache, but each of p’s four subsequent RMRs to Want [q][p] in R≤5 can only occur

after q writes Want [q][p], invalidating the copy of Want [q][p] in p’s cache. This and the

fact that process q writes Want [q][p] exactly three times in a passage (line 66, line 68,

and line 74) imply that there is a passage by q in which q executes lines 66..68 entirely

during R≤5 (i.e., q starts line 66 after R≤5 starts and next finishes line 68 before R≤5

finishes). In turn, this means that q chooses a ticket at line 67 (denote this operation

Cq) during R≤5. Let Cp be the operation in which p chose its ticket at line 67 prior to

entering the loop at line 70. Cp → R≤5, and Cq happens during R≤5, so Cp → Cq. This

and Lemma 5.1 imply that tp < tq, where tp and tq are the tickets chosen by p and q,

respectively. After Cq finishes, q writes tq to Want [q][p] at line 68 (denote this operation

Aq), which occurs before R≤5 finishes, and in particular, before R=5, p’s fifth RMR to

Want [q][p]. This and the fact that reads and writes are atomic, imply that Aq → R=5.

If q subsequently writes to Want [q][p] after Aq finishes, q always writes a value that is

at least as large as tq: at line 74, q writes ∞ to Want [q][p], and in subsequent passages

(if any), q announces at line 66 the ticket that it received in its previous passage, which

is at least tq, and announces at line 68 a ticket that is strictly larger than tq. Thus,

Want [q][p] > tp (i.e., Want [q][p] > Ticket [p]) is invariant from the start of R=5 until p

updates Ticket [p] in its next passage (if any). This implies that after R=5 (i.e., after p

makes its fifth RMR to Want [q][p] at line 72), p evaluates the condition at line 72 to be

true and removes q from p.predecessor set . In turn, this implies that p does not make a

sixth RMR to Want [q][p] before entering the CS, contradicting the assumption that it

does.

Lemma 5.8. A process makes Θ(N) RMRs in a passage of the algorithm in Figure 5.3
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in both the DSM and CC models.

Proof. We first do the proof for the CC model. A process p makes at most one RMR

reading Ticket [p] in the loop at line 70, since no process other than p writes Ticket [p].

This, Lemma 5.7, and the fact that there are N processes, imply that p makes at most

O(N) RMRs while p is executing the loop at line 70. Elsewhere in the algorithm, p makes

Θ(N) RMRs, as follows. Process p announces itself twice to every other process in the

system: once when it first leaves the NCS (line 66), and a second time after it chooses

its ticket (line 68). Each of these announcements incurs Θ(N) RMRs. Choosing a ticket

also incurs Θ(N) RMRs. Finally, in the exit protocol, p withdraws its announcement to

enter the CS from every other process exactly once. This also incurs Θ(N) RMRs. Thus

the RMR complexity is Θ(N) in the CC model.

The result also follows for the DSM model by a similar argument. The only difference

in the DSM model is that p makes no RMRs while in the loop at line 70, as each variable

Ticket [p] and Want [q][p] is local to p.

Theorem 5.9. The algorithm in Figure 5.3 satisfies k-exclusion, starvation freedom, and

k-FCFS. Moreover, it has RMR complexity Θ(N) in both the DSM and CC models.

Proof. The result follows from Lemmas 5.4, 5.5, 5.6, and 5.8.

5.5 Space-optimal Local-spin k-Exclusion in the CC

Model (Atomic RWs)

In Figure 5.4 we present a k-exclusion algorithm that uses only atomic reads and writes,

has O(N) RMR complexity in the CC model, and has O(N) space complexity. Any

mutual exclusion algorithm that uses only atomic reads and writes requires Ω(N) shared

variables [9], and so this algorithm is space-optimal.2

2It is space-optimal in terms of the number of shared variables used; however, the shared variables

can grow without bound.



Chapter 5. The k-Bakery 84

The algorithm in Figure 5.4 is similar to the one in Figure 5.3, except that the Want

array is one-dimensional. In particular, a process p writes its ticket into Want [p] instead

of writing its ticket into Want [p][q] for each q separately. When p first leaves the NCS,

it writes to Want [p] the ticket that it chose in its previous passage (line 78). After this,

p chooses a new ticket (line 79), and then writes the new ticket to Want [p] (line 80).

Each process q, when it reaches the loop at line 82, reads p’s ticket from Want [p]. The

correctness of the algorithm follows a nearly identical argument to the one made for

the algorithm in Figure 5.3. The only place where an unbounded number of RMRs can

potentially be made is in the loop at line 82. As a result of the features of the CC model,

however, the RMR complexity of this algorithm is O(N), which we prove below.

Figure 5.4: (CC/Atomic RWs) k-Exclusion algorithm for process p ∈ {1, ..., N}

shared variables:
Want : array[1..N ] of N ∪ {∞} init all ∞
Ticket : array[1..N ] of N init all 0

private variables:

predecessor set : Set of N

loop76

NCS77

Want [p] := Ticket [p]78

Ticket [p] := 1 + max(Ticket [1],Ticket[2], ...,Ticket [N ])79

Want [p] := Ticket [p]80

predecessor set := {1..N} \ {p}81

while |predecessor set | ≥ k do82

foreach i ∈ predecessor set do83

if (Ticket [p], p) < (Want [i], i) then84

predecessor set := predecessor set \ {i}

CS85

Want [p] := ∞86

end loop87
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5.5.1 Proofs

Let Cp denote the operation in which process p chooses its ticket at line 79, and let

EPp denote the operation in which p executes its exit protocol at line 86. Using these

definitions of Cp and EPp, the statements of Lemma 5.1, Corollary 5.2, and Lemmas 5.3,

5.4, 5.5, 5.6 are true for the algorithm in Figure 5.4. The proofs are almost identical to

the proofs given in Section 5.4, modulo line number changes, and so we do not reprove

them here. It is understood that any time we reference these lemmas in this section, we

are using them in the context of the algorithm in Figure 5.4.

The following lemma will allow us to prove that the algorithm has O(N) RMR com-

plexity in the CC model. The proof is nearly identical to the one for Lemma 5.7, modulo

line number differences and the fact that the statement in Lemma 5.7 is about Want [q][p]

instead of Want [q]. As such, we state it without proof.

Lemma 5.10. Let p and q be distinct processes. In the CC model, while p is executing

the loop at line 82, process p makes at most five RMRs reading Want [q] at line 84.

Lemma 5.11. A process makes at most Θ(N) RMRs in a passage of the algorithm given

in Figure 5.4 in the CC model.

Proof. A process makes at most 1 RMR to Ticket [p] in the loop at line 82 since no process

other than p writes Ticket [p]. This, Lemma 5.10, and the fact that there are N processes

in the system, imply that a process makes Θ(N) RMRs in the loop at line 82. A process

makes Θ(N) RMRs at line 79, Θ(1) RMRs at lines 78, 80, and 86, and no RMRs at

line 81. Thus the total number of RMRs a process makes in a passage is Θ(N).

Theorem 5.12. The algorithm in Figure 5.4 satisfies k-exclusion, starvation freedom,

and k-FCFS. Moreover, it has RMR complexity Θ(N) in the CC model.

Proof. The result follows from Lemmas 5.4, 5.5, 5.6, and 5.11.



Chapter 5. The k-Bakery 86

5.6 FIFE k-Exclusion (Atomic RWs)

The algorithms presented in the preceding sections do not satisfy the FIFE property. To

see why, we illustrate a scenario in which FIFE is violated by the algorithm in Figure 5.3.

This scenario can be easily adapted for the algorithm in Figure 5.4.

Assume that k = 2, and consider the following execution of processes p1, p2, p3, and

p4: Process p1 executes its doorway entirely, choosing a ticket tp1 > 0. After this, process

p2 executes its doorway and advances into the CS. Process p3 and process p4 then execute

their doorway, choosing tickets tp3 and tp4 , both of which are larger than tp1. Process p3

and p4 then stop taking steps temporarily. We assume this is the first time processes p3

and p4 have left the NCS, and so at this point Want [p3][p1] = 0 and Want [p4][p1] = 0.

This implies that when p1 executes the loop at line 71, p1 does not remove p3 or p4

from p1.predecessor set , and hence does not advance into the CS, until either p3 writes

Want [p3][p1] = tp3 or p4 writes Want [p4][p1] = tp4 (line 68). This violates FIFE, which

requires that p1 enters the CS in a bounded number of its own steps after p2 enters the

CS.

In this section we present a k-exclusion algorithm that satisfies FIFE, which turns

out to be a simple modification of the algorithm presented in Figure 5.3.

The FIFE algorithm is presented in Figure 5.5, and the modifications to the original

algorithm are shown shaded in gray. The doorway consists of lines 90..91.

FIFE says that if a process p finishes the doorway before a process q starts the

doorway, and q enters the CS before p, then p enters the CS in a bounded number of its

own steps. To ensure this, just before the process q enters the CS, q captures all processes

that have a smaller ticket (line 99). In particular, since process p finishes the doorway

before q starts the doorway, process p’s ticket will be strictly smaller than q’s ticket.

Process q captures p by setting the value of Capture [q][p] to q’s current ticket. This and

the fact that p has a smaller ticket than q, means that after q enters the CS, it will be
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the case that Ticket [p] < Capture[q][p]. The next time process p evaluates the condition

Ticket [p] < Capture[q][p] at line 98, p sets captured = true, allowing p to terminate the

loop at line 95 and enter the CS in a bounded number of its own steps, as required to

satisfy FIFE.

The addition of the capturing mechanism introduces a new way for processes to enter

the CS. On first inspection, this calls into question whether the algorithm still satisfies

k-exclusion, since it is not clear whether capturing can result in more than k processes

in the CS. It turns out that this is not the case. Intuitively, the reason that this cannot

happen is because a process only captures processes with smaller tickets. As a result, any

process that is captured is “legitimately” allowed to advance into the CS. We provide a

more precise proof of why k-exclusion holds in the next section.

5.6.1 Proofs

Let Cp denote the operation in which process p chooses its ticket at line 91, and let

EPp denote the operation in which p executes its exit protocol at line 101. Using these

definitions of Cp and EP p, the statements of Lemma 5.1, Corollary 5.2, Lemma 5.3, and

Lemma 5.5 (starvation freedom) are true for the algorithm in Figure 5.5. The proofs are

almost identical to the proofs given in Section 5.4, modulo line number changes, and so

we do not reprove them here. It is understood that any time we reference these lemmas

in this section, we are using them in the context of the algorithm in Figure 5.5.

The algorithm in this section introduces a capturing mechanism, which provides an

additional path for a process to enter the CS. As a result, it is not immediately obvious

that k-exclusion is satisfied. It is, and we prove this in Lemma 5.15. We also prove in

Lemma 5.16 that FIFE is satisfied.

We start by defining the notion of capturing more precisely and by introducing two

new lemmas (Lemma 5.13 and Lemma 5.14) that will help in the proof of k-exclusion.
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Figure 5.5: (Atomic RWs) FIFE k-Exclusion algorithm for process p ∈ {1, ..., N}

shared variables:
Want : array[1..N ][1..N ] of N ∪ {∞} init all ∞
Ticket : array[1..N ] of N init all 0

Capture : array[1..N ][1..N ] of N init all 0

(DSM model: Ticket [p], Want [i][p], Capture[i][p] are local to process p for all i)

private variables:

predecessor set : Set of N

captured : boolean

loop88

NCS89

foreach i ∈ {1..N} \ {p} do Want [p][i] := Ticket [p]90

Ticket [p] := 1 + max(Ticket [1],Ticket[2], ...,Ticket [N ])91

foreach i ∈ {1..N} \ {p} do Want [p][i] := Ticket [p]92

captured := false93

predecessor set := {1..N} \ {p}94

while |predecessor set | ≥ k ∧¬captured do95

foreach i ∈ predecessor set do96

if (Ticket [p], p) < (Want [i][p], i) then97

predecessor set := predecessor set \ {i}

foreach i ∈ {1..N} do if Ticket [p] < Capture[i][p] then captured := true98

foreach i ∈ {1..N} do Capture [p][i] := Ticket [p]99

CS100

foreach i ∈ {1..N} do Want [p][i] := ∞101

end loop102

Let Dr
p be the operation in which a process p detects capture by a process r at line 98,

i.e., Dr
p is the operation in which p reads Ticket [p] < Capture [r][p] and consequently sets

p.captured = true. Let Xp
r denote the operation in which a process r attempts to capture

a process p at line 99, i.e., Xp
r is the operation in which r writes its ticket to Capture[r][p]

at line 99. The following lemma relates these two concepts by showing that when a

process detects capture, there must exist some other process that previously attempted

to capture it.

Lemma 5.13. Suppose a process p detects capture by a process r in a passage in which
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it chooses a ticket tp. Then there exists a passage by r in which the following are true:

(i) r chooses a ticket tr > tp, and (ii) Xp
r 99K Dr

p.

Proof. Process p detects capture by r in a passage in which it chooses ticket tp > 0,

and so it must evaluate the condition tp < Capture[r][p] to be true at line 98. Initially,

Capture[r][p] = 0. This and the fact that reads and writes are atomic imply that some

process must write a value larger than tp before p reads Capture [r][p]. The only process

that writes Capture [r][p] is process r, at line 99, where it writes its ticket. Therefore

there exists a passage by r in which it chooses a ticket tr > tp, and it writes that ticket

to Capture [r][p] before p reads it, meaning that Xp
r 99K Dr

p.

Let Qp denote the first read operation in a passage that p executes after advancing

past the loop at line 95. After Qp finishes, we say that p is CS-qualified.

Lemma 5.14. Let Y be a set of processes such that |Y | ≥ k, and let p be a process that

chooses a ticket tp such that for all i ∈ Y , (tp, p) > (ti, i), where ti is the ticket chosen

by i. Then p is not CS-qualified until some process in Y starts the exit protocol.

Proof. Suppose, by way of contradiction, that p is CS-qualified before any process in Y

starts the exit protocol, i.e., Qp finishes before any process in Y starts the exit protocol.

Further assume that the lemma is not violated prior to the start of Qp. (If the lemma is

violated earlier, then we can modify our choice of process p and its passage so that the

preceding assumption holds.) By Lemma 5.3, p does not remove from p.predecessor set

any process in Y until some process in Y starts the exit protocol. This and the fact

that |Y | ≥ k means that p cannot advance past the loop at line 95, and hence start Qp,

until either p sets captured = true or some process in Y starts the exit protocol. By

assumption, Qp finishes before any process in Y starts the exit protocol, and so p starts

Qp after p sets captured = true, i.e., Qp starts after p detects capture by some process r.

This and Lemma 5.13 imply that there exists a passage by r in which the following are

true: (i) r chooses a ticket tr > tp, and (ii) Xp
r 99K Dr

p.
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By (i), tr > tp, and by the fact that (tp, p) is larger than any (ticket , process id)

pair chosen by a process in Y , it follows that r chooses a ticket tr such that (tr, r) is

larger than any (ticket , process id) pair in Y . By (ii), Qr → Xp
r 99K Dr

p → Qp, and so

Qr → Qp. This and the assumption that Qp finishes before any process in Y starts the

exit protocol, imply that Qr finishes before any process in Y starts the exit protocol, i.e.,

r is CS-qualified before any process in Y starts the exit protocol. Thus when r becomes

CS-qualified the statement of the lemma is violated. By Qr → Qp, r’s passage violates

the statement of the lemma prior to the start of Qp, which contradicts the assumption

that the lemma is not violated prior to the start of Qp.

Using the preceding lemma, it is straightforward to prove k-exclusion.

Lemma 5.15. The algorithm in Figure 5.5 satisfies k-exclusion.

Proof. Suppose, by way of contradiction, that k+1 processes are in the CS concurrently.

Let Y be this set of processes, and let p ∈ Y be the process in Y with the largest

(ticket , process id) pair. By Lemma 5.14, p is not CS-qualified until some process in

Y \ {p} leaves the CS, which means that p cannot be in the CS concurrently with all

other processes in Y . This contradicts the assumption that p is in the CS concurrently

with all other processes in Y .

We now prove that FIFE holds.

Lemma 5.16. The algorithm in Figure 5.5 satisfies FIFE.

Proof. Let p and q be distinct processes that choose tickets tp and tq, respectively. Sup-

pose that p finishes the doorway before q starts the doorway, and that q enters the CS

before p. To prove that FIFE holds we show that after q enters the CS, p enters the CS

in a bounded number of its own steps.

Process p finishes the doorway before q starts it, and therefore Cp → Cq. This and

Lemma 5.1 imply that tp < tq. Before q enters the CS, q writes tq to Capture[q][p] at
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line 99. Moreover, the tickets chosen by q strictly increase with each passage that q

executes, and so any time q subsequently writes to Capture[q][p] it writes a value larger

than tq. This and the fact that tq > tp imply that from the time that q enters the CS

until p starts another passage Capture[q][p] > tp is invariant. This means that the first

time that p evaluates the condition tp < Capture[q][p] at line 98 after q enters the CS,

the condition evaluates to true, and p sets captured = true. In turn, this and the fact

that p executes each iteration of the loop in a bounded number of its own steps imply

that after q enters the CS, p finishes the loop at line 95 in a bounded number of its own

steps. Furthermore, by inspection, process p finishes line 99 in a bounded number of its

own steps. Hence, after q enters the CS, p enters the CS in a bounded number of its own

steps.

The next lemma is used to prove that the algorithm has Θ(N) RMR complexity in

the CC model. The proof is similar to the proof for Lemma 5.7, modulo line number

differences, and so we state it without proof.

Lemma 5.17. Let p and q be distinct processes. In the CC model, while p is executing

the loop at line 95, process p makes at most five RMRs reading Want [q][p] at line 97.

Besides reading entries in the Want array in the loop at line 95, processes also read

Capture entries. The following lemma is the analog to Lemma 5.17 for Capture entries.

Lemma 5.18. Let p and q be distinct processes. In the CC model, while p is executing

the loop at line 95, process p makes at most three RMRs reading Capture[q][p] at line 98.

Proof. Suppose, by way of contradiction, that p makes four RMRs reading Capture [q][p]

at line 98. Let R≤3 be the operation in which p makes the first three of these RMRs

to Capture[q][p], and let R=3 ⊆ R≤3 be the operation in which p makes (only) its third

RMR reading Capture [q][p]. Recall that in the CC model a process makes an RMR when



Chapter 5. The k-Bakery 92

it reads a variable for the first time, writes a variable, and whenever a process reads a

variable for the first time after another process has written that variable. During R≤3

(i.e., after R≤3 starts and before R≤3 finishes), q must update Capture [q][p] at least two

times: p’s first RMR in R≤3 may happen because p does not have a copy of Capture [q][p]

in its cache, but each of p’s two subsequent RMRs to Capture [q][p] in R≤3 can only occur

after q writes Capture[q][p], invalidating the copy of Capture[q][p] in p’s cache. Process q

writes Capture [q][p] only once per passage at line 99, and so there must be two distinct

passages in which q writes Capture[q][p]. Let W0 be q’s first write to Capture [q][p], and

W1 be q’s second write to Capture [q][p] in its next passage. W0 and W1 both happen

during R≤3 (i.e., W0 starts after R≤3 starts and W1 finishes before R≤3 finishes). Let Cq

be the operation in which q chooses its ticket at line 91 in the same passage as W1. Let

Cp be the operation in which p chose its ticket at line 91 prior to entering the loop at

line 95.

Cp → R≤3, W0 → Cq → W1, and W0 happens during R≤3. Thus, Cp → Cq. This

and Lemma 5.1 imply that tp < tq, where tp and tq are the tickets chosen by p and q,

respectively. Ticket tq is the value that q writes to Capture[q][p] in W1. Furthermore,

W1 finishes before R≤3 finishes, and in particular, before R=3, p’s third RMR reading

Capture[q][p], finishes. This and the fact that reads and writes are atomic, imply that

W1 → R=3. If q subsequently writes to Capture [q][p] after W1 finishes, q always writes

a value that is at least as large as tq: in subsequent passages (if any), q chooses a ticket

strictly larger than tq, and thus writes to Capture [q][p] a value larger than tq. Thus,

Capture[q][p] > tp (i.e., Capture [q][p] > Ticket [p]) is invariant from the start of R=3 until

p updates Ticket [p] in its next passage (if any). This implies that after R=3 finishes (i.e.,

after p makes its third RMR to Capture[q][p] at line 98), p evaluates the condition at

line 98 to be true and sets captured = true. In turn, this implies that p does not make a

fourth RMR to Capture[q][p] before entering the CS, contradicting the assumption that

it does.
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Lemma 5.19. A process makes Θ(N) RMRs in a passage of the algorithm in Figure 5.5

in both the DSM and CC models.

Proof. We first do the proof for the CC model. A process p makes at most one RMR

reading Ticket [p] in the loop at line 95, since no process other than p writes Ticket [p].

This, Lemma 5.17, Lemma 5.18, and the fact that there are N processes in the system,

imply that p makes O(N) RMRs while in the loop at line 95. Elsewhere in the algorithm,

p makes Θ(N) RMRs, as follows. Process p announces itself twice to every other process

in the system: once when it first leaves the NCS (line 90), and a second time after it

chooses its ticket (line 92). Each of these announcements incurs Θ(N) RMRs. Choosing a

ticket also incurs Θ(N) RMRs. The capturing mechanism at line 99 incurs Θ(N) RMRs.

Finally, in the exit protocol, p withdraws its announcement to enter the CS from every

other process exactly once. This also incurs Θ(N) RMRs. Thus the RMR complexity is

Θ(N) in the CC model.

The result also follows for the DSM model by a similar argument. The only difference

in the DSM model is that p makes no RMRs while in the loop at line 95, as each variable

Ticket [p], Want [q][p] and Capture[q][p] is local to p.

Theorem 5.20. The algorithm in Figure 5.5 satisfies k-exclusion, starvation freedom,

k-FCFS, and FIFE. Moreover, it has RMR complexity Θ(N) in both the DSM and CC

models.

Proof. Follows from Lemmas 5.15, 5.5, 5.16 and 5.19.

5.7 FIFE k-Exclusion (Non-atomic RWs)

In this section we present a modification to the FIFE k-exclusion algorithm in Figure 5.5

that works when reads and writes are non-atomic. The algorithm is given in Figure 5.6.

The trying protocol consists of lines 105..121, and the doorway consists of lines 105..107.
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Firstly, we observe that none of the preceding algorithms satisfy k-exclusion, starva-

tion freedom, or FIFE if reads and writes are non-atomic. The problem is that there

are no guarantees on the value a process reads from a variable if some other process is

concurrently writing the variable. Consider, for example, the algorithm in Figure 5.5,

and the case where k = 1. Suppose processes p and q concurrently execute line 91, and

that p and q choose tickets tp and tq, respectively. Further suppose that tq < tp and

that after p and q are both done choosing tickets (line 91), q temporarily stops taking

steps. Process p races ahead of q into the loop at line 95, and starts reading Want [q][p]

at line 97. At the same time, q starts writing Want [q][p] at line 92. Since the reads and

writes are not atomic, p can read any value from Want [q][p]. In particular, suppose that

p reads a value from Want [q][p] such that tp < Want [q][p]. In this case, p removes q from

its predecessor set. All other processes are in the NCS, and so p removes them from its

predecessor set as well and advances into the CS. When q reaches line 97, it evaluates

(tq, q) < (Want [p][q], p) to be true, since the ticket tp that p last wrote to Want [p][q]

is larger than the ticket tq that q chose. Thus q will remove p from its predecessor set,

along with all the other processes, which are in the NCS. After this, q advances into

the CS, and k-exclusion is violated for k = 1. A slightly more complex scenario can be

constructed for k = 2 to illustrate that starvation freedom and FIFE also do not hold.

To solve this problem, we employ a technique similar to one used by Lamport in

his register constructions [34]. The technique involves reading variables in the oppo-

site order of which they are written. We “duplicate” each Want [i][j] and Capture[i][j]

variable in our algorithm. That is, for each i, j, we create Want [i][j][1], Want [i][j][2],

Capture[i][j][1], and Capture [i][j][2]. Wherever a write of value v to Want [i][j] occurs

in the algorithm in Figure 5.5, in the new algorithm we write v to Want [i][j][1] and

Want [i][j][2], in that order. Wherever a read of variable Want [i][j] occurs in the algo-

rithm in Figure 5.5, in the new algorithm we read Want [i][j][2] and Want [i][j][1], in that

order. Reading and writing Capture [i][j][1] and Capture [i][j][2] in the new algorithm is
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done analogously. Note that in the algorithm we present the duplicate writes on the same

line (e.g., line 106). We use this notation for compactness; the writes are still distinct

(non-atomic) operations and occur in the order that they appear on the line.

There is also a new condition checked at line 120 that was not in the version of

the algorithm with atomic reads and writes. In that version, there was no harm in p

capturing i repeatedly in successive passages. Here, however, if p continues capturing i

in each passage that p executes, it could be that every time that i checks to see if it is

captured by p (on lines 117..118), it happens to read Capture[p][i][1] and Capture[p][i][2]

as p is writing into them (on line 121) and so it does not find that it is captured. This

neutralizes the capturing mechanism and can result in a violation of FIFE. To avoid the

problem p does not attempt to capture any process it previously captured, by performing

the test on line 120.

To gain some understanding about how the preceding changes fix the algorithm,

consider again the problem scenario that we described above in which k-exclusion was

violated. Process p and q leave the NCS for the first time, write 0 into all Want entries

in the loop at line 105, and then concurrently execute line 107. Process p chooses a ticket

tp larger than the ticket tq that q chooses, i.e., tq < tp, after which process q temporarily

stops taking steps. Process p then races ahead of q into the loop at line 112. When

p tests the condition at line 114, the only way p evaluates it to be true is if q writes

Want [q][p][2] at the same time that p reads Want [q][p][2]. For q to write Want [q][p][2]

(line 109), it must first finish writing Want [q][p][1] (line 109). Thus, when p checks

the condition at line 115, p will evaluate it to be false unless q starts another write of

Want [q][p][1] concurrently with p’s read of Want [q][p][1]. However, for this to happen,

q must start another passage of the algorithm, in which case it is safe for p to remove q

from p’s predecessor set.
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Figure 5.6: (Non-atomic RWs) FIFE k-Exclusion algorithm for process p ∈
{1, ..., N}

shared variables:
Want : array[1..N ][1..N ][1..2] of N ∪ {∞} init all ∞
Ticket : array[1..N ] of N init all 0
Capture : array[1..N ][1..N ][1..2] of N init all 0

(DSM model: Ticket [p], Want [i][p][j], Capture[i][p][j] are local to process p for all
i, j)

private variables:

predecessor set : Set of N

captured : boolean

loop103

NCS104

foreach i ∈ {1..N} \ {p} do105

Want [p][i][1] := Ticket [p];Want [p][i][2] := Ticket [p]106

Ticket [p] := 1 + max(Ticket [1],Ticket[2], ...,Ticket [N ])107

foreach i ∈ {1..N} \ {p} do108

Want [p][i][1] := Ticket [p];Want [p][i][2] := Ticket [p]109

predecessor set := {1..N} \ {p}110

captured := false111

while |predecessor set | ≥ k ∧ ¬captured do112

foreach i ∈ predecessor set do113

if (Ticket [p], p) < (Want [i][p][2], i) then114

if (Ticket [p], p) < (Want [i][p][1], i) then115

predecessor set := predecessor set \ {i}

foreach i ∈ {1..N} do116

if Ticket [p] < Capture[i][p][2] then117

if Ticket [p] < Capture [i][p][1] then captured := true118

foreach i ∈ {1..N} do119

if Capture[p][i][1] ≤ Ticket [i] then120

Capture [p][i][1] := Ticket [p];Capture[p][i][2] := Ticket [p]121

CS122

foreach i ∈ {1..N} do123

Want [p][i][1] := ∞;Want [p][i][2] := ∞124

end loop125

5.7.1 Proofs

Let Cp denote the operation in which process p chooses its ticket at line 107, and let EPp

denote the operation in which p executes its exit protocol at lines 123..124.



Chapter 5. The k-Bakery 97

The following lemma and its corollary are analogues to Lemma 5.1 and Corollary 5.2.

The proof for the lemma below is nearly the same as Lemma 5.1, modulo line number

differences.

Lemma 5.21. Let p and q be distinct processes. If Cp → Cq, then tp < tq, where tp and

tq are the tickets chosen by p and q, respectively.

Proof. Process p finishes line 107 before q starts it, and so the value that q reads from

Ticket [p] at line 107 is no smaller than tp. This and inspection of line 107 imply that the

ticket tq that q chooses satisfies tq > tp.

As a corollary to the preceding lemma, we state its contrapositive:

Corollary 5.22. Let p and q be distinct processes, and suppose p and q choose tickets tp

and tq. If tq ≤ tp, then Cq 99K Cp.

The following lemma is an analogue to Lemma 5.3. The proof below is more complex

than the one for Lemma 5.3, as it needs to take into account that entries in the Want

array have been duplicated, and reads and writes are non-atomic.

Lemma 5.23. Let p and q be distinct processes, and suppose p and q choose tickets tp

and tq, respectively. If (tq, q) < (tp, p), then p does not remove q from p.predecessor set

before EP q starts.

Proof. Suppose, by way of contradiction, that p removes q from p.predecessor set at

line 115 before EP q starts. At line 115, p reads a value wq1 in Want [q][p][1] such that

(tp, p) < (wq1, q) (denote this read operation R1) before removing q from p.predecessor set

and therefore before EP q starts. At line 114, before R1 starts, p reads a value wq2 in

Want [q][p][2] such that (tp, p) < (wq2, q) (denote this read operation R2). Process q writes

into Want [q][p][1] and Want [q][p][2] at most six times in its passage: at line 106 q writes

the ticket t′q < tq that q chose in its preceding passage (denote these writes W11 and
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W12); at line 109 q writes tq (denote these writes W21 and W22); and finally, at line 124,

q writes ∞ (denote these writes W31 and W32).

Claim 5.23.1. R2 → R1 → W31 → W32.

Proof. By the way we defined R1 and R2, R2 → R1. Also, by the way we defined W31 and

W32, W31 → W32. It remains to show that R1 → W31. This follows from the following

two facts: (i) R1 finishes before EP q starts, and (ii) W31 ⊆ EP q. (Claim 5.23.1)

Claim 5.23.2. W11 → W12 → R2 → R1.

Proof. By the way we defined W11 and W12, W11 → W12. Also, by the way we defined

R1 and R2, R2 → R1. It remains to show that W12 → R2. By the assumption that

(tq, q) < (tp, p), tq ≤ tp. This and Corollary 5.22 imply that Cq 99K Cp. By inspection

of the algorithm, W12 → Cq and Cp → R2. Thus, W12 → Cq 99K Cp → R2, and so

W12 → R2. (Claim 5.23.2)

There are two cases to consider: R2 → W22, or W22 99K R2. In the first case, by

Claim 5.23.2, W12 → R2 → W22. W12 and W22 are successive writes into Want [q][p][2],

and so R2 reads the value written by W12, namely the ticket t′q < tq that q chose in its

preceding passage. By assumption, (tq, q) < (tp, p), which implies that t′q < tq ≤ tp. That

is, R2 must read a value t′q such that t′q < tp. This contradicts that R2 reads a value wq2

such that (tp, p) < (wq2, q), i.e., wq2 ≥ tp.

In the second case, W22 99K R2. This and definition of W21, W22, R2, and R1 imply

that W21 → W22 99K R2 → R1. Therefore, W21 → R1. In turn, this and Claim 5.23.1

imply that W21 → R1 → W31. W21 and W31 are successive writes into Want [q][p][1] and

so the value wq1 that R1 reads must be the value tq written by W21, i.e., wq1 = tq. By

assumption, (tq, q) < (tp, p), which contradicts that (tp, p) < (wq1, q).

For the atomic FIFE algorithm in Section 5.6, we defined some terminology regarding

the capturing mechanism. We need to update this terminology for the non-atomic FIFE
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algorithm in this section. Let Dp
q be the operation in which a process q detects capture

by a process p at lines 117–118, i.e., Dp
q is the operation in which q reads Ticket [q] <

Capture[p][q][2] and Ticket [q] < Capture [p][q][1] and consequently sets q.captured = true

at line 118. LetXq
p denote the operation in which a process p attempts to capture a process

q at line 121, i.e., Xq
p is the operation in which p writes its ticket to Capture [q][p][1] and

Capture[q][p][2] at line 121. Note that these operations are non-atomic.

The following lemma relates capture detection and capture attempts by showing that

when a process detects capture, there must exist some other process that previously

attempted to capture it. The lemma is an analogue to Lemma 5.13, but its proof is

more complex since it needs to take into account that entries in the Capture array are

duplicated, and the fact that reads and writes are non-atomic.

Lemma 5.24. Suppose a process p detects capture by a process r in a passage in which

p chooses a ticket tp. Then there exists a passage by process r in which the following are

true: (i) r chooses a ticket tr > tp, and (ii) Xp
r 99K Dr

p.

Proof. Process p detects capture by a process r in a passage in which it chooses a ticket

tp > 0. This implies that p reads a value wr1 from Capture [r][p][1] at line 118 such

that tp < wr1 (denote this read operation R1), and prior to this reads a value wr2 from

Capture[r][p][2] at line 117 such that tp < wr2 (denote this read operation R2). Initially,

Capture[r][p][1] = 0 and Capture[r][p][2] = 0, and so some process must start writing

to Capture[r][p][1] and Capture [r][p][2] before Dr
p ends. The only process that writes

Capture[r][p][1] and Capture [r][p][2] is process r, at line 121, and the only value that

r writes to Capture [r][p][1] and Capture [r][p][2] is the ticket that r chose in its current

passage. This means that there exists a passage by r in which r starts an attempt to

capture p before Dr
p ends, i.e., Xp

r 99K Dr
p. Consider the last such passage by r prior to

the end of Dr
p. It remains to show that in this passage r chooses a ticket tr > tp. Suppose,

by way of contradiction, that r chooses ticket tr ≤ tp in this passage. Let W1 be the

write by r in which it writes tr to Capture [r][p][1] at line 121, and let W2 be the write by
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r in which it writes tr to Capture [r][p][2] at line 121. Either W1 → R1 or R1 99K W1:

Case 1: W1 → R1. By definition, R1 ⊆ Dr
p, and W1 is the last write to

Capture[r][p][1] that starts prior to the end of Dr
p. This and W1 → R1 imply that

W1 is the last write to Capture [r][p][1] before R1 starts. Therefore, R1 reads the value

written by W1. That is, R1 reads tr, and so wr1 = tr. By assumption, however, tr ≤ tp,

which contradicts that wr1 > tp.

Case 2: R1 99K W1. We first argue that R2 → W2, and then show that this gives

rise to a contradiction.

Claim 5.24.1. R2 → W2

Proof. We have that R2 → R1 99K W1 → W2, and so R2 → W2. (Claim 5.24.1)

Let Cp denote the operation in which p chooses ticket tp at line 107, and let Cr denote

the operation in which r chooses ticket tr at line 107. Let W ′
2 be the last write by r to

Capture[r][p][2] at line 121 before W2. (W
′
2 must exist, otherwise R2 → W2 implies that

R2 reads the initial 0 value from Capture[r][p][2], contradicting that R2 reads a value

larger than tp, where tp > 0.) Let t′r be the ticket written by W ′
2. Either R2 99K W ′

2 or

W ′
2 → R2:

Case 2a: R2 99K W ′
2. In this case, Cp → R2 99K W ′

2 → Cr, and so Cp → Cr. By

Lemma 5.21, tp < tr, which contradicts the assumption that tr ≤ tp.

Case 2b: W ′
2 → R2. By Claim 5.24.1, W ′

2 → R2 → W2. W ′
2 and W2 are successive

writes to Capture[r][p][2] and so R2 reads t
′
r, the ticket written by r in W ′

2. The ticket t′r

must be smaller than tr, since tickets strictly increase with each passage that a process

executes, and W ′
2 occurs in a passage that precedes the one in which r chooses tr. This

and the assumption that tr ≤ tp imply that the value t′r returned by R2 is smaller than tp,

which contradicts the fact that the value wr2 = t′r returned by R2 is greater than tp.

Let Qp denote the first read operation in a passage that p executes after advancing

past the loop at line 112. After Qp finishes, we say that p is CS-qualified.
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The following lemma is an analogue to Lemma 5.14, and is critical for proving k-

exclusion. Its proof turns out to be very similar to the proof of Lemma 5.14. The reason

for this similarity is because the proof relies on Lemma 5.24, and the proof of Lemma 5.14

relies on the analogue of Lemma 5.24, i.e., Lemma 5.13. The introduction of non-atomic

reads and writes in the algorithm of this section only affects the proof of Lemma 5.24,

but not (at least not directly) the proof below.

Lemma 5.25. Let Y be a set of processes such that |Y | ≥ k, and let p be a process that

chooses a ticket tp such that for all i ∈ Y , (tp, p) > (ti, i), where ti is the ticket chosen

by i. Then p is not CS-qualified until some process in Y starts the exit protocol.

Proof. Suppose, by way of contradiction, that p is CS-qualified before any process in Y

starts the exit protocol, i.e., Qp finishes before any process in Y starts the exit protocol.

Further assume that the lemma is not violated prior to the start of Qp. (If the lemma is

violated earlier, then we can modify our choice of process p and its passage so that the

preceding assumption holds.) By Lemma 5.23, p does not remove from p.predecessor set

any process in Y until some process in Y starts the exit protocol. This and the fact

that |Y | ≥ k means that p cannot advance past the loop at line 112, and hence start

Qp, until either p sets captured = true or some process in Y starts the exit protocol. By

assumption, Qp finishes before any process in Y starts the exit protocol, and so p starts

Qp after p sets captured = true, i.e., Qp starts after p detects capture by some process r.

This and Lemma 5.24 imply that there exists a passage by r in which the following are

true: (i) r chooses a ticket tr > tp, and (ii) Xp
r 99K Dr

p.

By (i), tr > tp, and by the assumption that for all i ∈ Y , (tp, p) > (ti, i), it follows

that r chooses a ticket tr such that for all i ∈ Y , (tr, r) > (ti, i). By (ii), Qr → Xp
r 99K

Dr
p → Qp, and so Qr → Qp. This and the assumption that Qp finishes before any process

in Y starts the exit protocol, imply that Qr finishes before any process in Y starts the

exit protocol, i.e., r is CS-qualified before any process in Y starts the exit protocol. Thus

when r becomes CS-qualified the statement of the lemma is violated. By Qr → Qp, r’s



Chapter 5. The k-Bakery 102

passage violates the statement of the lemma prior to the start of Qp, which contradicts

the assumption that the lemma is not violated prior to the start of Qp.

Using the preceding lemma, it is straightforward to prove k-exclusion.

Lemma 5.26. The algorithm in Figure 5.6 satisfies k-exclusion.

Proof. Suppose, by way of contradiction, that k + 1 processes are in the CS concur-

rently. Let Y be this set of processes, and let p ∈ Y be the process with the largest

(ticket , process id) pair. By Lemma 5.25, p is not CS-qualified until some process in

Y \ {p} leaves the CS, which means that p cannot be in the CS concurrently with all

other processes in Y . This contradicts the assumption that p is in the CS concurrently

with all other processes in Y .

The following lemma is used to prove that FIFE holds, and that a process has O(N)

RMR complexity in the CC model.

Lemma 5.27. If a process p is non-faulty and finishes the doorway before a process q

starts the doorway, then after q enters the CS, p enters the CS after taking O(N) steps.

Proof. Assume that a process p is non-faulty and finishes the doorway before a process

q starts the doorway. We need to show that after q enters the CS, p enters the CS after

taking O(N) steps. Suppose, for contradiction, that this is not the case. Let CS p be the

operation in which p executes the CS, and let CS q be the operation in which q executes

its first step in the CS. (If CS q does not exist, i.e., q never enters the CS, then the lemma

holds, so assume that CS q exists. We have no guarantee at this point that p enters

the CS, but we define the CS p operation now and are careful to make sure it exists if

necessary in our reasoning below.) Furthermore, let tp and tq be the tickets chosen by p

and q, respectively, at line 107.

Claim 5.27.1. tp < tq.
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Proof. Since p finishes the doorway before q starts the doorway, Cp → Cq. Hence, by

Lemma 5.21, tp < tq.

Let RT
q be the read by process q of Ticket [p] at line 120. (This read exists by the

structure of the algorithm and the fact that CS q exists.) Let W T
p ⊆ Cp be p’s write

of tp to Ticket [p] at line 107. (This operation exists since p finishes the doorway by

assumption).

Claim 5.27.2. If R̂ is RT
q , or R̂ is a read by q of Ticket [p] at line 120 such that RT

q →

R̂ → CS p, then R̂ returns the same value as written by W T
p , i.e. tp.

Proof. Assume that R̂ is RT
q , or that R̂ is a read by q of Ticket [p] at line 120 such that

RT
q → R̂ → CS p. Also, let W

T+
p be p’s first write to Ticket [p] after W T

p , i.e., W
T+
p is p’s

write to Ticket [p] at line 107 in its next passage. (Note that W T+
p may not exist.)

The assumption that process p finishes the doorway before q starts the doorway, and

the fact that W T
p and Cq are part of the doorway, imply W T

p → Cq → RT
q , and so

W T
p → RT

q . Therefore W T
p → R̂ (since R̂ is RT

q or RT
q → R̂). Process p is the only

process that writes Ticket [p], and so if W T+
p does not exist, then W T

p is the uniquely

defined last write to Ticket [p] that finishes before R̂ starts, and we’re done. So assume

that W T+
p exists. We will now show that R̂ → W T+

p . Once we do this, since p is the only

process to write Ticket [p], and W T
p and W T+

p are successive writes by p, it follows that

R̂ must read the value written by W T
p , i.e., tp. It remains to show that R̂ → W T+

p .

Suppose, for contradiction, that W T+
p 99K R̂. Since W T+

p exists and is a write at

line 107 in p’s next passage, it follows that CS p exists. Furthermore, by the structure of

the algorithm and the assumption that R̂ → CS p, we have that CS p → W T+
p 99K R̂ →

CS p, which implies that CS p → CS p. This contradicts that → is an irreflexive relation.

Thus R̂ → W T+
p , as desired.

Let RC
q1 be q’s read of Capture[q][p][1] at line 120. (This reads exists by the structure

of the algorithm and the fact that CS q exists.) Furthermore, let RC
p2 and RC+

p2 be p’s first
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and second (in the sense of the total order given by →) operations in the same passage by

p that read Capture[q][p][2] at line 117 such that CS q 99K RC
p2. (These operations exist

by inspection of the algorithm, the assumption that p is non-faulty, and the assumption

that after q enters the CS, p does not enter the CS after taking O(N) steps.)

Either q evaluates the condition at line 120 to be true or not.

Case 1: q evaluates the condition at line 120 to be true.

In this case, let WC
q1 and WC

q2 be q’s write of tq to Capture[q][p][1] and Capture [q][p][2]

at line 121. (These writes exist by the structure of the algorithm, the assumption of this

case, and the assumption that CS q exists).

Recall that RC
p2 and RC+

p2 are p’s first and second read of Capture[q][p][2] at line 117

such that CS q 99K RC
p2.

Claim 5.27.3. RC+

p2 reads tq.

Proof. By CS q 99K RC
p2 and the structure of the algorithm, WC

q2 → CS q 99K RC
p2 → RC+

p2 ,

and so WC
q2 → RC+

p2 . We will now show that RC+

p2 reads the same value as written by

WC
q2, i.e., tq. To do this, we show that for any write Ŵ to Capture[q][p][2] other than

WC
q2, either Ŵ → WC

q2 or RC+

p2 → Ŵ .

Process q is the only process that writes Capture[q][p][2]. For any write Ŵ to

Capture[q][p][2] by q other than WC
q2, either Ŵ → WC

q2 or WC
q2 → Ŵ . If Ŵ → WC

q2,

then we’re done. So assume that WC
q2 → Ŵ . It suffices to show that RC+

p2 → Ŵ for the

first write Ŵ by q such that WC
q2 → Ŵ . Suppose, for contradiction that Ŵ 99K RC+

p2 .

Let RC′

q1 be q’s read of Capture[q][p][1] at line 120 immediately before Ŵ , and let RT ′

q

be q’s read of Ticket [p] at line 120 immediately before Ŵ . (These operations exist by

the structure of the algorithm.) The condition at line 120 must be true for Ŵ to exist,

and so RC′

q1 returns a value that is ≤ the value returned by RT ′

q .

By the assumption that Ŵ 99K RC+

p2 , and the structure of the algorithm, we have

that RT ′

q → Ŵ 99K RC+

p2 → CS p, and so RT ′

q → CS p. Furthermore, RT
q → RT ′

q , and so
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RT
q → RT ′

q → CS p. By Claim 5.27.2, RT ′

q returns the same value as written by W T
p , i.e.,

tp. We will now prove that RC′

q1 returns tq. Once we do so, we can make the following

argument. In the preceding paragraph we established that RC′

q1 returns a value that is ≤

the value returned by RT ′

q , and so tq ≤ tp, i.e. tp ≥ tq. This contradicts Claim 5.27.1,

which says that tp < tq. (Thus, the supposition that Ŵ 99K RC+

p2 will be false, and

RC+

p2 → Ŵ , as desired.) It remains to prove that RC′

q1 returns tq.

RC′

q1 occurs in later passage by q than WC
q1, and so WC

q1 → RC′

q1 . We will prove that

RC′

q1 returns the same value written as WC
q1, i.e., tq. To do this, we show that for any

write W̄ to Capture[q][p][1] other than WC
q1, either W̄ → WC

q1 or RC′

q1 → W̄ .

Process q is the only process that writes Capture [q][p][1]. Recall that Ŵ is the first

write by q to Capture [q][p][2] after WC
q2, and RC′

q1 is the read of Capture [q][p][1] that

immediately precedes Ŵ . Process q writes Capture[q][p][1] and Capture [q][p][2] at most

once per passage (at line 121), after the condition at line 120 is evaluated. So, by the

structure of the algorithm, the first write by q to Capture [q][p][1] after WC
q1 finishes can

start only after RC′

q1 finishes. Therefore, for any write W̄ by q to Capture [q][p][1] other

than WC
q1, either W̄ → WC

q1 (if W̄ occurs in a passage before the one in which WC
q1 and

WC
q2 occur), or RC′

q1 → W̄ (if W̄ occurs after WC
q1 finishes), as desired.

By Claim 5.27.3, RC+

p2 reads tq, and by Claim 5.27.1, tp < tq. Thus p evaluates the

condition at line 117 to be true. An argument similar to the one in Claim 5.27.3 can be

used to establish that the value returned by p’s next read of Capture[q][p][1] at line 118

is tq. Using this, we can establish that the condition p evaluates at line 118 is true. After

this point, p sets captured to be true, and, by inspection of the algorithm, executes O(N)

more steps prior to entering the CS.

We have established the following: After q enters the CS, p executes O(N) steps

before starting RC+

p2 at line 117. This follows by the structure of the algorithm and

because RC
p2 and RC+

p2 are p’s first and second reads of Capture [q][p][2] at line 117 such

that CS q 99K RC
p2. After finishing RC+

p2 , p executes O(N) more steps prior to entering
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the CS. Therefore, after q enters the CS, p executes O(N) steps in the trying protocol

before entering the CS. This contradicts that after q enters the CS, p does not enter the

CS after taking O(N) steps.

Case 2: q evaluates the condition at line 120 to be false.

By Claim 5.27.2, RT
q returns tp. By assumption of this case, q evaluates the condition

at line 120 to be false, and so RC
q1 returns a value strictly greater than tp.

Recall that RC
p2 and RC+

p2 are p’s first and second read of Capture[q][p][2] at line 117

such that CS q 99K RC
p2.

Claim 5.27.4. RC+

p2 reads the same value as RC
q1.

Proof. By the structure of the algorithm and the assumption that CS q 99K RC
p2,

RC
q1 → CS q 99K RC

p2 → RC+

p2 , and so RC
q1 → RC+

p2 . Process q is the only process that

writes Capture[q][p][1] and Capture[q][p][2]. We show that for any write Ŵ by q to

Capture[q][p][1] (resp. Capture[q][p][2]), either Ŵ → RC
q1 (i.e., Ŵ occurs in a passage

preceding the one in which RC
q1 occurs), or RC+

p2 → Ŵ . Once we do so, this, and the fact

that process q writes the same value to Capture[q][p][1] and Capture [q][p][2] at most once

per passage at line 121, imply that RC+

p2 reads the same value as RC
q1. It remains to show

that for any write Ŵ by q to Capture[q][p][1] (resp. Capture[q][p][2]), either Ŵ → RC
q1,

or RC+

p2 → Ŵ .

By assumption of this case, q does not write Capture [q][p][1] (resp. Capture [q][p][2])

in the same passage as RC
q1 occurs. Thus, for any write Ŵ to Capture[q][p][1] (resp.

Capture[q][p][2]) by q, either Ŵ → RC
q1 or RC

q1 → Ŵ . If Ŵ → RC
q1, then we are done.

So assume that RC
q1 → Ŵ . It suffices to show that RC+

p2 → Ŵ for the first write Ŵ to

Capture[q][p][1] (resp. Capture[q][p][2]) by q such that RC
q1 → Ŵ . Suppose, for contra-

diction that Ŵ 99K RC+

p2 .

Let RC′

q1 be q’s read of Capture[q][p][1] at line 120 immediately before Ŵ , and let RT ′

q

be q’s read of Ticket [p] at line 120 immediately before Ŵ . (These operations exist by
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the structure of the algorithm.) The condition at line 120 must be true for Ŵ to exist,

so RC′

q1 returns a value that is ≤ the value returned by RT ′

q .

By the assumption that Ŵ 99K RC+

p2 , and the structure of the algorithm, we have

that RT ′

q → Ŵ 99K RC+

p2 → CS p, and so RT ′

q → CS p. This, and the fact that RT ′

q occurs

in a later passage than RT
q , imply RT

q → RT ′

q → CS p. So, by Claim 5.27.2, RT ′

q returns

the same value as written by W T
p , i.e., tp. In the preceding paragraph we established

that RC′

q1 returns a value v that is ≤ the value returned by RT ′

q , and so v ≤ tp. We will

now prove that RC′

q1 returns the same value v as RC
q1. Once we do so, we can make the

following argument. Recall that by assumption of this case, the value returned by RC
q1

is strictly greater than tp. Therefore v > tp, which contradicts that v ≤ tp. Thus, the

supposition that Ŵ 99K RC+

p2 is false, and RC+

p2 → Ŵ , as desired. It remains to prove

that RC′

q1 returns the same value as RC
q1.

RC′

q1 occurs in a passage after RC
q1, so RC

q1 → RC′

q1 . To show that RC′

q1 returns the same

value as RC
q1, we show that for any write W̄ to Capture[q][p][1], W̄ → RC

q1 or RC′

q1 → W̄ .

Process q is the only processes that writes Capture[q][p][1]. Recall that Ŵ is the first

write by q to Capture[q][p][1] (resp. Capture [q][p][2]) after RC
q1, and RC′

q1 is the read of

Capture[q][p][1] by q that immediately precedes Ŵ . Process q writes Capture[q][p][1] and

Capture[q][p][2] at most once per passage (at line 121), after the condition at line 120

is evaluated, and no writes by q to Capture [q][p][1] or Capture[q][p][2] occur in the same

passage that RC
q1 occurs. Therefore, for any write W̄ by q to Capture[q][p][1], either

W̄ → RC
q1 (if W̄ occurs in a passage before the one in which RC

q1 occurs), or RC′

q1 → W̄

(if W̄ occurs in the same or later passage as Ŵ ), as desired.

By Claim 5.27.4, RC+

p2 returns the same value as RC
q1. Immediately before Claim 5.27.4,

we established that RC
q1 returns a value strictly greater than tp. Thus p evaluates the

condition at line 117 to be true. An argument similar to the one in Claim 5.27.4 can be

used to establish that the value returned by p’s next read of Capture[q][p][1] at line 118

is the same as the value returned by RC
q1. Using this, we can establish that the condition
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p evaluates at line 118 is true. After this point, p sets captured to be true, and, by

inspection of the algorithm, executes O(N) more steps prior to entering the CS.

We have established the following: After q enters the CS, p executes O(N) steps

before starting RC+

p2 at line 117. This follows by the structure of the algorithm and

because RC
p2 and RC+

p2 are p’s first and second reads of Capture [q][p][2] at line 117 such

that CS q 99K RC
p2. After finishing RC+

p2 , p executes O(N) more steps prior to entering

the CS. Therefore, after q enters the CS, p executes O(N) steps in the trying protocol

before entering the CS. This contradicts that after q enters the CS, p does not enter the

CS after taking O(N) steps.

Lemma 5.28. The algorithm in Figure 5.6 satisfies FIFE.

Proof. This result follows immediately from Lemma 5.27.

We next prove that deadlock freedom holds. We then prove that the FIFE property

(Lemma 5.28) together with deadlock freedom imply starvation freedom.

Recall the alternate statement of the deadlock freedom property for k-exclusion from

Section 1.4:

Deadlock Freedom: If a non-faulty process p is stuck in the trying protocol forever,

and at most k − 1 processes crash, then some process executes an infinite number

of passages through the CS.

Lemma 5.29. The algorithm in Figure 5.6 satisfies deadlock freedom.

Proof. Suppose, by way of contradiction, that the algorithm is not deadlock free. Thus

there is a set Y 6= ∅ of live processes so that eventually all processes in Y are stuck

forever in the trying protocol and all other processes are forever in the NCS or crash.

Let p be the process in Y with the smallest (ticket , process id) pair, and let tp be the

ticket that p chooses. All the processes in Y eventually reach the loop at line 112, and

so by inspection of the algorithm, eventually no shared variables are ever written after a
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certain point in the execution. For each process q that is eventually in the NCS forever,

the last value that q writes to Want [q][p][1] and Want [q][p][2] is ∞. This and inspection

of lines 114..115 imply that p eventually removes from its predecessor set all processes

that are eventually in the NCS forever. For each process q ∈ Y \ {p}, the last value

tq that q writes to Want [q][p][1] and Want [q][p][2] is such that (tp, p) < (tq, q). This

and inspection of lines 114..115 imply that p eventually removes from its predecessor

set all processes in Y \ {p}. Therefore the only processes that eventually remain in p’s

predecessor set are faulty processes. There are at most k − 1 faulty processes, and so

p eventually finishes the loop at line 112 and enters the CS. This contradicts that p is

stuck in the trying protocol forever.

Lemma 5.30. The algorithm in Figure 5.6 satisfies starvation freedom.

Proof. Suppose, by way of contradiction, that some non-faulty process p is stuck in the

trying protocol forever, and at most k−1 other processes have crashed. By Lemma 5.29,

some process q executes through the CS infinitely often. Moreover, the only place where

p can get stuck forever is in the loop at line 112. The second time that q executes through

the CS while p is stuck in the loop at line 112, q will have started the doorway after p

already finished it. Thus, by the FIFE property (Lemma 5.28), after q enters the CS, p

can enter the CS in a bounded number of its own steps. This contradicts that p is stuck

in the trying protocol forever.

Lemma 5.31. In the CC model, a process p makes O(N) RMRs in the loop at line 112.

Proof. Either process p makes at most 40N RMRs in the loop at line 112, or at least

40N +1 RMRs. In the former case, the lemma is clearly true. In the latter case, let R≤40

denote the operation in which p makes its first 40N +1 RMRs. Process p makes at most

one RMR in R≤40 to the variable Ticket [p], since no process other than p ever writes that

variable. Besides Ticket [p], there are at most 4N other shared variables (Want [i][p][1],
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Want [i][p][2], Capture [i][p][1], and Capture[i][p][2], for each i ∈ {1..N}) that p reads in

the loop, and so p makes at least ten RMRs to one of these variables before R≤40 finishes.

We consider the possible variables in four separate cases:

Case 1: Process p makes at least ten RMRs to Want [q][p][2] for some process q. Let

R≤10 ⊆ R≤40 be the operation in which p makes these RMRs, and let Ri
p ⊆ R≤10 for

i ∈ {1..10} be the operation in which p makes (only) its i’th RMR in R≤10. Recall that in

the CC model a process makes an RMR when it reads a variable for the first time, writes

a variable, and whenever a process reads a variable for the first time after another process

has written that variable. During R≤10 (i.e., after R≤10 starts and before R≤10 finishes), q

must updateWant [q][p][2] at least nine times: p’s first RMR in R≤10 may happen because

p does not have copy of Want [q][p][2] in its cache, but each of p’s nine subsequent RMRs

to Want [q][p][2] in R≤10 can only occur after q writes Want [q][p][2], invalidating the copy

of Want [q][p][2] in p’s cache. More precisely, there must exist distinct write operations

W j
q by q to Want [q][p][2], for j ∈ {1..9}, such that Rj

p 99K W j
q → Rj+1

p . This and

the fact that process q writes Want [q][p][2] exactly three times in a passage (line 106,

line 109, and line 124) imply that there is a passage by q that occurs during R≤10, (i.e.,

q’s passage starts after R≤10 starts and finishes before R≤10 finishes). More precisely,

there is a passage Pq by process q such that R1
p → Pq and Pq → R10

p . Let the operation

DWY q denote q’s execution of its doorway in Pq, and let DWY p denote p’s execution of

its doorway. DWY p → R1
p → Pq, and so DWY p → R1

p → DWY q. This implies that p

finishes its doorway before q starts its doorway. By this and Lemma 5.27, after q enters

the CS, p enters the CS after taking O(N) steps. Process q’s passage Pq finishes before

R10
p starts (since Pq → R10

p ), and so q enters the CS before p finishes R≤10. Therefore,

after R≤10 finishes, p enters the CS after taking O(N) steps. This implies that p makes

O(N) additional RMRs in the loop at line 112 after R≤10 finishes. (End of Case 1)

The argument for the remaining cases is similar: it involves showing that there exists

a passage by q that occurs entirely during R≤10, and then applying Lemma 5.27 to show
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that p makes at most O(N) additional RMRs in the loop at line 112 after R≤10 finishes.

We summarize the cases below, but the details are omitted.

Case 2: Process p makes at least ten RMRs to Want [q][p][1] for some process q. The

argument for this case is nearly identical to Case 1.

Case 3: Process p makes at least ten RMRs to Capture[q][p][2] for some process

q. The argument for this case is nearly identical to Case 1, except that q writes

Capture[q][p][2] exactly once in a passage, at line 121.

Case 4: Process p makes at least ten RMRs to Capture[q][p][1] for some process

q. The argument for this case is nearly identical to Case 1, except that q writes

Capture[q][p][1] exactly once in a passage, at line 121.

Lemma 5.32. The algorithm in Figure 5.6 makes Θ(N) RMRs in both the DSM and

CC models.

Proof. We first prove the lemma for the CC model. A process p announces itself four times

to each process in the system: twice when it first leaves the NCS in the loop at line 105,

and another two times in the loop at line 108. Each of these announcements incurs Θ(N)

RMRs. Choosing a ticket at line 107 also incurs Θ(N) RMRs. By Lemma 5.31, p makes

O(N) RMRs in the loop at line 112, and the capturing mechanism at line 119 incurs

Θ(N) RMRs. Finally, in the exit protocol, p withdraws its announcement to enter the

CS from every other process exactly twice. This also incurs Θ(N) RMRs. Thus the RMR

complexity is Θ(N) in the CC model.

The result also follows for the DSM model by a similar argument. The only difference

in the DSM model is that p makes no RMRs while in the loop at line 112, as each

variable Ticket [p], Want [q][p][1], Want [q][p][2], Capture[q][p][1], and Capture[q][p][2] is

local to p.

Theorem 5.33. The algorithm in Figure 5.6 satisfies k-exclusion, starvation freedom,

and FIFE when reads and writes are non-atomic. Moreover, it has RMR complexity

Θ(N) in both the DSM and CC models.
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Proof. Follows from Lemmas 5.26, 5.30, 5.28, and 5.32.

5.8 k-Exclusion with Ticket Resetting (Non-atomic

RWs)

One desirable feature of the Bakery algorithm [32] that is not present in our k-exclusion

algorithms is that each process resets its ticket to zero in the exit protocol. This means

that if there is a period of quiescence in which all processes are in the NCS, all tickets will

be reset to zero. In contrast, in our algorithms tickets necessarily grow without bound

and are never reset. In this section, we modify the algorithm given in Figure 5.3 so

that tickets are reset in the exit protocol. The new algorithm is presented in Figure 5.7

and works even if reads and writes are non-atomic: It satisfies k-exclusion, starvation

freedom, and k-FCFS, and has RMR complexity O(N). Like the algorithm in Figure 5.3,

however, it does not satisfy FIFE. The doorway consists of lines 128..130, the waiting

room consists of lines 131..137, and the exit protocol consists of lines 139..141.

Processes use three shared arrays to communicate with each other: Doorway, Ticket ,

and Bypass . These arrays are two dimensional in both the CC and DSM model.3 In the

DSM model the entries Doorway[q][p], Ticket [q][p] and Bypass[q][p], for any processes

p and q, are local to process p. The Doorway array is used by a process to announce

when it is executing through the doorway of the trying protocol. In particular, when a

process p starts the doorway at line 128, p announces this to each process q by setting

Doorway[p][q] = true, and after p finishes the doorway at line 130, p similarly announces

this to q by setting Doorway[p][q] = false at line 131. The Ticket array is used to choose

and announce tickets, which provide a rough guideline for the order in which processes are

3Technically, in the CC model, it suffices to use one dimensional versions of the Doorway and Ticket

shared arrays. However, Bypass must be two dimensional in both the CC and DSM models, so it is not

possible to asymptotically save any space by presenting a separate version of our algorithm for the CC

model.
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admitted to the CS. Specifically, the entry Ticket [p][q] contains the ticket value process

p has chosen and announced to process q. If p is in the NCS, then this value is 0. Lastly,

the Bypass array is used by a process in the waiting room to determine whether other

processes have bypassed it. Informally, we say a process q bypasses another process p in

the waiting room if q executes through the exit protocol while p is in the waiting room.

To understand the algorithm at a high-level, first consider the case where k = 1.

In this case, it turns out we can delete references to Bypass : line 132, the check of

Bypass[i][p] at line 136, and the loop at line 140. In fact, as a result of these deletions,

what we arrive at is a local-spin version of Lamport’s Bakery algorithm. The intuition

behind Lamport’s Bakery algorithm was explained in Section 5.1. To see why this version

of the algorithm fails when k = 2 (or for any k > 1), consider the following scenario with

processes p, q, and r. Process p enters the loop at line 134, and just before it checks entry

q in p.predecessor set (line 135), q enters the doorway. Process p then sees Doorway[q][p],

and thus does not remove q from p.predecessor set at line 137. Since k = 2, q freely enters

the CS and then returns to the NCS. Process r then enters the doorway, after which point

p checks entry r in p.predecessor set . Since r is in the doorway, p cannot remove r from

p.predecessor set . This scenario repeats ad infinitum. As a result, p constantly sees at

least two processes in its predecessor set and is prevented from ever entering the CS. If p

were able to detect q and r “bypassing” it while p was in the waiting room, then p would

not have to starve. This is the motivation behind the Bypass array. We now provide a

more complete commentary of the algorithm.

At line 129, process p chooses a ticket by determining the largest ticket currently held

by some process and adding 1 to it. This roughly guarantees that p chooses a ticket that

is larger than any ticket held by another active process, and places p “last in line” for

entry into the CS. Since line 129 is non-atomic, other processes may execute line 129

concurrently with p, in which case it is possible that the ticket that p chooses is not in

fact the largest. This does not affect the correctness of the algorithm, however. After
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this, p finishes the doorway at line 130 by announcing the ticket it chose to all other

processes.

At line 132, p sets Bypass[q][p] = false for every process q, and then at line 133,

initializes a predecessor set with all other processes in the system. The predecessor set

is intended to approximate the set of processes that are trying to concurrently enter the

CS with p and that have priority over p to enter the CS, as in the algorithms presented

in the preceding sections.

The purpose of lines 134..137 is to prevent a process p from entering the CS until

enough processes are eliminated from p’s predecessor set. To this end, p repeatedly tests

the condition at line 136 for each process still in its predecessor set. If the condition is

true for some process, then p removes that process from its predecessor set.

We now detail the purpose of each part of the condition at line 136. For any process

q, if p sees Bypass [q][p] = true, then process q bypassed p. That is, q executed through

the exit protocol after p started the waiting room, which means that q does not have

priority over p in p’s current passage. In the second part of the condition at line 136, p

checks if q is not in the doorway, and that one of the following is true: the ticket that

q has announced to p is 0, in which case q is not trying to enter the CS; or that p’s

(ticket , process id) pair is smaller than q’s, in which case p has priority over q. If either

the first or second part of the condition holds, then p removes q from its predecessor set.

When the size of p’s predecessor set goes below k, p enters the CS.

Note that the ordering of conditions in the second half of line 136 is important. In

particular, p must check that q is not in the doorway before it checks whether the ticket

that q has announced to p is 0 or that p’s (ticket , process id) pair is smaller than q’s.

To see why this is important, suppose that p first checks if Ticket [q][p] = 0, and then

checks if ¬Doorway [q][p] is true. If p reads Ticket [q][p] = 0, it is possible that q was in

fact in the doorway, but had not yet announced its ticket at line 130. Then, if p sees

¬Doorway[q][p], q may have already left the doorway. As a result, p may incorrectly
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remove q from its predecessor set, even though q may possibly have a smaller ticket than

p.

In the exit protocol (lines 139..141), p lets every process know that it no longer wants

entry into the CS by announcing a ticket value of 0. After this, for each process q in the

system, process p sets Bypass[p][q] = true, but only if it is currently false. By doing this,

p informs processes that may be stuck in the waiting room that p has bypassed them.

The reason p sets a Bypass entry only when it is false is so that the algorithm works

with non-atomic reads and writes. Otherwise, a situation may arise in which p executes

through the CS infinitely often, but another process q stuck in the waiting room never

removes p from its predecessor because q reads the Bypass entry concurrently with p’s

write.

Bypass [p][q] (for each p, q) is the only shared variable whose value needs to be checked

before writing (line 141). On first inspection it may seem possible that q, in a single

passage, can read incorrect values from other shared variables infinitely often as a result of

them being written in repeated passages. This is not the case, however, since Bypass [p][q]

will not be repeatedly written. Once q sees Bypass[p][q] set to to true (line 136), q can

remove p from q.predecessor set , and q will not read any of the other shared variables

associated with p (Doorway[p][q] and Ticket [p][q]) until q’s next passage.

To see why this algorithm is local-spin in the DSM model, we observe that unbounded

waiting occurs only in the loop at line 134. The variables process p accesses in this loop

are all local to p, and so p makes no remote memory references while in this loop. The

algorithm is also local-spin in the CC model, which we prove below in Lemma 5.46.

Also, note that unlike the preceding k-exclusion algorithm that uses only non-atomic

reads and writes, none of the shared variables are duplicated. It is not necessary to

duplicate Doorway or Bypass , since these variables are boolean. It is not necessary to

duplicate Ticket [q][p] for any process q because p first checks whether q is in the doorway

(line 136) before reading Ticket [q][p]. To understand this in more detail, suppose that
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p sees that ¬Doorway[q][p] (i.e., q is not in the doorway), and then goes on to read

Ticket [q][p]. If q concurrently writes Ticket [q][p] during p’s read of this variable, then

the danger exists that p may read an erroneous value from Ticket [q][p] and incorrectly

remove q from p.predecessor set . However, since p first read that ¬Doorway [q][p], it must

be the case that if q concurrently writes Ticket [q][p] during p’s read of Ticket [q][p], then

q started the doorway after p finished it. Therefore, it is safe for p to remove q from

p.predecessor set , and reading an incorrect value from Ticket [q][p] is harmless.

The proof of correctness follows the same structure as the proofs for the earlier al-

gorithms, however the proofs here are more complex. The proofs need to take into

account that tickets can be reset, and the introduction of the bypass mechanism. These

items modify the conditions under which a process waits and can potentially compromise

k-exclusion.

5.8.1 Proofs

Let Cp denote the operation in which process p chooses its ticket at line 129, let Ap

denote the operation in which p announces its ticket at line 130, and let EPp denote the

operation in which p executes its exit protocol at lines 139..141.

Lemma 5.34. Let p and q be distinct processes. If Ap → Cq and Cq → EPp, then

tp < tq, where tp and tq are the tickets chosen by p and q, respectively.

Proof. Process p announces its ticket (line 130) before q chooses its ticket (line 129), and

process q chooses its ticket (line 129) before p resets its ticket (line 139). Therefore the

value that q reads from Ticket [p][q] at line 129 is equal to tp. Process q adds one to this

value, and so the ticket tq that q chooses satisfies tq > tp.

As a corollary to the preceding lemma, we state it in the following logically equivalent

form:
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Corollary 5.35. Let p and q be distinct processes, and suppose p and q choose tickets tp

and tq. If tq ≤ tp and Cq → EPp, then Cq 99K Ap.

Figure 5.7: (Non-atomic RWs) k-Exclusion ticket resetting algorithm for process
p ∈ {1, ..., N}

shared variables:
Ticket : array[1..N ][1..N ] of N init all 0
Doorway: array[1..N ][1..N ] of boolean init all false
Bypass : array[1..N ][1..N ] of boolean init all false

(DSM model: Ticket [i][p], Want [i][p], Bypass [i][p], Doorway[i][p] local to p ∀i)

private variables:

predecessor set : Set of N

ticket : N

loop126

NCS127

foreach i ∈ {1..N} do Doorway[p][i] := true128

ticket := 1 + max(Ticket [1][p],Ticket [2][p], ...,Ticket [N ][p])129

foreach i ∈ {1..N} do Ticket [p][i] := ticket130

foreach i ∈ {1..N} do Doorway[p][i] := false131

foreach i ∈ {1..N} do Bypass [i][p] := false132

predecessor set := {1..N} \ {p}133

while |predecessor set | ≥ k do134

foreach i ∈ predecessor set do135

if Bypass [i][p] ∨ (¬Doorway[i][p] ∧ (Ticket [i][p] = 0 ∨ (ticket , p) <136

(Ticket [i][p], i))) then
predecessor set := predecessor set \ {i}137

CS138

foreach i ∈ {1..N} do Ticket [p][i] := 0139

foreach i ∈ {1..N} do140

if ¬Bypass [p][i] then Bypass [p][i] := true141

end loop142

The following lemma is an analogue to Lemma 5.3 and Lemma 5.23. Its proof differs

from either of the proofs for Lemma 5.3 and Lemma 5.23 as it needs to take into account

the bypass mechanism, the fact that reads and writes are non-atomic, and the fact that

tickets can be reset.

Lemma 5.36. Let p and q be distinct processes, and suppose p and q choose tickets tp

and tq, respectively. If (tq, q) < (tp, p) and Cq → EPp then p does not remove q from
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p.predecessor set before EP q starts.

Proof. Assume that (tq, q) < (tp, p) and that Cq → EPp. Suppose, by way of contradic-

tion, that p removes q from p.predecessor set before EP q starts.

Claim 5.36.1. Cq 99K Ap.

Proof. The assumption that (tq, q) < (tp, p) implies that tq ≤ tp. This, the assumption

that Cq → EP p, and Corollary 5.35, imply that Cq 99K Ap. (Claim 5.36.1)

Before p removes q from its predecessor set, p reads Bypass[q][p], Doorway[q][p], and

Ticket [q][p] (in that order) to evaluate the condition at line 136. Let RB
p , R

D
p , and RT

p

be these reads, respectively.

Claim 5.36.2. RB
p returns false.

Proof. The only processes that write into Bypass[q][p] are p and q. Process p sets

Bypass[q][p] = false at line 132 (denote this write operation WB
p ) and process q may

set Bypass[q][p] = true at line 141 of the exit protocol. There are no other places where

Bypass[q][p] is written. By inspection of the algorithm, WB
p → RB

p .

Let WB
q be any write operation by q into Bypass[q][p]. It remains to show that either

WB
q → WB

p or RB
p → WB

q . (To see why this suffices, note that if this is the case for

all writes WB
q by q into Bypass [q][p], there is a well-defined last write into Bypass [q][p]

that precedes RB
p , namely WB

p , which sets this variable false, and there are no writes into

Bypass[q][p] concurrent with RB
p .)

As we observed, q only writes Bypass[q][p] in its exit protocol. So, to prove that either

WB
q → WB

p or RB
p → WB

q it suffices to prove that: (1) if EP ′
q is q’s execution of the exit

protocol in its preceding passage, then EP ′
q → WB

p , and (2) RB
p → EP q.

For (1) we have that, by the structure of the algorithm and Claim 5.36.1, EP ′
q →

Cq 99K Ap → WB
p , from which it follows that EP ′

q → WB
p .
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For (2) we have that, by the structure of the algorithm, RB
p ends before p removes

q from p.predecessor set , which, by the hypothesis of this lemma, happens before EP q

starts. Thus, RB
q → EP q. (Claim 5.36.2)

By Claim 5.36.2, and lines 136..137, for p to remove q from p.predecessor set , RD
p

must return false, and RT
p must return 0 or some value t such that (tp, p) < (t, q).

Let WD
q and WD+

q be the successive write operations in which q writes, respectively,

true and false into Doorway[q][p] at lines 128 and 131.

Claim 5.36.3. WD+

q 99K RD
p

Proof. By Claim 5.36.1 and the structure of the algorithm, WD
q → Cq 99K Ap → RD

p ,

and so WD
q → RD

p . If RD
p → WD+

q , then WD
q → RD

p → WD+

q . That is, RD
p occurs

entirely between two successive writes into Doorway[q][p], and hence must return the

value written by WD
q , which is true. This, however, contradicts that RD

p returns false.

Therefore it is not the case that RD
p → WD+

q , and so, WD+

q 99K RD
p . (Claim 5.36.3)

Let W T
q and W T+

q be the successive write operations in which q writes tq and 0,

respectively, into Ticket [q][p] at lines 130 and 139. By inspection of the order of op-

erations on line 136, we have that RD
p → RT

p . This and Claim 5.36.3 imply that

W T
q → WD+

q 99K RD
p → RT

p , and so W T
q → RT

p .

RT
p finishes before process p removes q from p.predecessor set , and by assumption,

process p removes q from p.predecessor set before EP q starts. Therefore RT
p → EP q.

Furthermore, W T+

q ⊆ EP q, and so RT
p → W T+

q . This and the fact that W T
q → RT

p

(established in the preceding paragraph) imply that W T
q → RT

p → W T+

q . That is, RT
p

occurs entirely between two successive writes to Ticket [q][p], and hence must return the

value written by W T
q , which is tq. Processes always choose non-zero tickets, so tq 6= 0.

Recall that RB
p , RD

p , and RT
p are p’s reads of Bypass[q][p], Doorway[q][p], and

Ticket [q][p] when p evaluates the condition at line 136 before p removes q from

p.predecessor set . By Claim 5.36.2, RB
p returns false. So, by the condition at line 136,



Chapter 5. The k-Bakery 120

RD
p must return false, and RT

p must return zero or a value t such that (tp, p) < (t, q). We

established in the preceding paragraph that RT
p returns tq 6= 0. Therefore (tp, p) < (tq, q),

contrary to the assumption that (tq, q) < (tp, p).

We now prove that k-exclusion holds, which relies on Lemma 5.36. The proof follows

the same structure as the proofs of k-exclusion for the simpler algorithms. The added

complexity due to ticket resetting and the non-atomicity of reads and writes is taken care

of in the proof of Lemma 5.36.

Lemma 5.37. The algorithm in Figure 5.7 satisfies k-exclusion.

Proof. Suppose, by way of contradiction, that k + 1 processes are in the CS concur-

rently. Let Y be this set of processes, and let p be the process in Y with the largest

(ticket , process id) pair. Moreover, as all the processes in Y are in the CS concurrently,

every process in Y \ {p} finishes line 129 before p starts the exit protocol. That is, for

any q ∈ Y \ {p}, Cq → EPp. Thus, by Lemma 5.36, when p executes the trying protocol,

p does not remove any process in Y from p.predecessor set until some process in Y starts

executing the exit protocol. This implies that the size of p’s predecessor set is at least k

until some process in Y leaves the CS. Thus p cannot enter the CS until some process in

Y leaves the CS, which contradicts that p is in the CS concurrently with all processes in

Y .

The following technical lemma will be used to prove that the algorithm satisfies

starvation freedom, and has O(N) RMR complexity in the CC model.

Lemma 5.38. Let p and q be distinct processes, and assume that q starts executing a

passage Pq after p finishes writing false to Bypass [q][p] at line 132. There exists at most

one read Rp by p to Bypass [q][p] at line 136 in p’s current passage such that Pq → Rp.

Proof. If there exists no read Rp by p to Bypass[q][p] such that Pq → Rp, then we’re

done. So assume that such a read exists, and that Rp is the first such read by p.
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Let W 0
p be the operation in which p writes false to Bypass [q][p] at line 132, and let

Rq be q’s read of Bypass [q][p] at line 141. Rq either returns true or false.

Case 1: Rq returns false. By inspection of line 141, q writes true to Bypass [q][p]

immediately after Rq. Let Wq be this write operation, which is part of passage Pq. By

assumption, Pq → Rp, and so Wq → Rp. We will now prove that Rp returns true. Once

we do so, the following holds. After Rp returns true, p removes q from p.predecessor set ,

and there cannot be any more reads by p to Bypass[q][p] in p’s current passage, proving

the lemma. It remains to prove that Rp returns true.

Wq → Rp, and Wq writes true to Bypass[q][p]. Thus, to prove that Rp returns true,

we will show that for any write Ŵ to Bypass [q][p] other than Wq, either Ŵ → Wq or

Rp → Ŵ . Processes p and q are the only processes to write Bypass [q][p]. We consider

these cases separately:

Case 1a: Ŵ is a write by process p. By assumption, W 0
p → Pq. Since Wq is part

of Pq, W
0
p → Wq. If p does not write Bypass[q][p] after W 0

p , then for every write Ŵ by

p to Bypass[q][p], Ŵ → Wq, and we’re done. So assume that p does write Bypass [q][p]

after W 0
p . Let W 1

p be the first such write after W 0
p . Process p only writes Bypass [q][p]

once per passage at line 132, and so W 1
p occurs in a later passage than W 0

p . W
0
p and Rp

occur in the same passage, and so W 1
p occurs in a later passage than Rp, i.e., Rp → W 1

p .

Thus, for every write Ŵ by p to Bypass [q][p], either Ŵ → Wq (if Ŵ is W 0
p or an earlier

write) or Rp → Ŵ (if Ŵ is W 1
p or a later write).

Case 1b: Ŵ is a write by process q. If q does not write Bypass[q][p] after Wq,

then for every write Ŵ by q to Bypass[q][p] other than Wq, Ŵ → Wq, and we’re done. So

assume that there is a write W 1
q by q to Bypass[q][p] that occurs after Wq, and assume

that W 1
q is the first such write by q.

Claim 5.38.1. Rp → W 1
q .

Proof. Suppose, for contradiction, that W 1
q 99K Rp. Process q writes Bypass[q][p] at most
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once per passage at line 141, and so W 1
q occurs in a later passage than Wq. Let R

1
q be the

read by q of Bypass [q][p] that immediately precedes W 1
q and occurs in the same passage

as W 1
q . By inspection of line 141, R1

q must return false for the write W 1
q to happen. We

will now prove that R1
q returns true, which contradicts that it must return false.

By assumption W 0
p → Pq, and Wq is part of Pq, so W 0

p → Wq. Hence, by the structure

of the algorithm, W 0
p → Wq → R1

q . We will show that for every write W̄ to Bypass [q][p]

other than Wq, either W̄ → Wq or R
1
q → W̄ . This proves that R1

q returns the same value

as written by Wq, i.e., true. So it remains to prove that for every write W̄ other than

Wq, either W̄ → Wq or R
1
q → W̄ .

Process p and q are the only processes to write Bypass [q][p]. First consider writes by

process q. W 1
q is the first write to Bypass [q][p] after Wq, and it occurs immediately after

R1
q . Thus, for every write W̄ to Bypass[q][p] by q other than Wq, either W̄ → Wq (if W̄

occurs before Wq) or R
1
q → W̄ (if W̄ is W 1

q or a later write), as desired.

Next consider writes W̄ by process p. If p does not write Bypass [q][p] after W 0
p , then

by W 0
p → Wq, it follows that for every write W̄ by p to Bypass [q][p], W̄ → Wq, and we’re

done. So assume that p does write Bypass [q][p] after W 0
p . Let W

1
p be the first such write.

Process p only writes Bypass[q][p] once per passage at line 132, and so W 1
p must occur in

a later passage than W 0
p . Also, W

0
p and Rp occur in the same passage, and so W 1

p must

occur in a later passage than Rp, i.e., Rp → W 1
p . By our assumption that W 1

q 99K Rp,

and the structure of the algorithm, we thus have that R1
q → W 1

q 99K Rp → W 1
p , and so

R1
q → W 1

p . This and W 0
p → Wq imply that for every write W̄ to Bypass[q][p] by p, either

W̄ → Wq (if W̄ is W 0
p or an earlier write) or R1

q → W̄ (if W̄ is W 1
p or a later write), as

desired.

Recall that W 1
q is the first write to Bypass [q][p] by q after Wq. Thus, by Claim 5.38.1,

for every write Ŵ by q to Bypass[q][p] other than Wq, either Ŵ → Wq (if Ŵ occurs

before Wq) or Rp → Ŵ (if Ŵ is W 1
q or a later write).

Case 2: Rq returns true. By assumption, Pq → Rp, and Rq is part of Pq, so
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Rq → Rp. We will now prove that Rp returns true. After Rp returns true, p removes q

from p.predecessor set , and there cannot be any more reads by p to Bypass [q][p] in p’s

current passage, proving the lemma. It remains to prove that Rp returns true.

Rq → Rp, and by assumption of this case, Rq returns true. To prove that Rp returns

true, we will show that for any write Ŵ to Bypass[q][p], either Ŵ → Rq or Rp → Ŵ .

Processes p and q are the only processes to write Bypass[q][p]. We consider these cases

separately:

Case 2a: Ŵ is a write by process p. By assumption, W 0
p → Pq. Since Rq is part

of Pq, W
0
p → Rq. If p does not write Bypass[q][p] after W 0

p , then for every write Ŵ by

p to Bypass[q][p], Ŵ → Rq, and we’re done. So assume that p does write Bypass [q][p]

after W 0
p . Let W 1

p be the first such write after W 0
p . Process p only writes Bypass [q][p]

once per passage at line 132, and so W 1
p occurs in a later passage than W 0

p . W
0
p and Rp

occur in the same passage, and so W 1
p occurs in a later passage than Rp, i.e., Rp → W 1

p .

Thus, for every write Ŵ by p to Bypass [q][p], either Ŵ → Rq (if Ŵ is W 0
p or an earlier

write) or Rp → Ŵ (if Ŵ is W 1
p or a later write).

Case 2b: Ŵ is a write by process q. If q does not write Bypass[q][p] after Rq,

then for every write Ŵ by q to Bypass[q][p], Ŵ → Rq, and we’re done. So assume that

there is a write W 1
q by q to Bypass [q][p] that occurs after Rq, and assume that W 1

q is the

first such write by q.

Claim 5.38.2. Rp → W 1
q .

Proof. Suppose, for contradiction, that W 1
q 99K Rp. Process q writes Bypass[q][p] at most

once per passage at line 141, and so W 1
q occurs in a later passage than Rq. Let R

1
q be the

read by q of Bypass [q][p] that immediately precedes W 1
q and occurs in the same passage

as W 1
q . By inspection of line 141, R1

q must return false for the write W 1
q to happen. We

will now prove that R1
q returns true, which contradicts that it must return false.

By assumption W 0
p → Pq, and Rq is part of Pq, so W 0

p → Rq. Hence, by the structure
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of the algorithm, W 0
p → Rq → R1

q . We will show that for every write W̄ to Bypass [q][p],

either W̄ → Rq or R
1
q → W̄ . This proves that R1

q returns the same value as Rq, i.e., true.

So it remains to prove that for every write W̄ , either W̄ → Rq or R1
q → W̄ .

Process p and q are the only processes to write Bypass [q][p]. First consider writes by

process q. W 1
q is the first write to Bypass[q][p] after Rq, and it occurs immediately after

R1
q . Thus, for every write W̄ to Bypass[q][p] by q, either W̄ → Rq (if W̄ occurs before

Rq) or R
1
q → W̄ (if W̄ is W 1

q or a later write), as desired.

Next consider writes W̄ by process p. If p does not write Bypass [q][p] after W 0
p , then

by W 0
p → Rq, it follows that for every write W̄ by p to Bypass[q][p], W̄ → Rq, and we’re

done. So assume that p does write Bypass [q][p] after W 0
p . Let W

1
p be the first such write.

Process p only writes Bypass[q][p] once per passage at line 132, and so W 1
p must occur in

a later passage than W 0
p . Also, W

0
p and Rp occur in the same passage, and so W 1

p must

occur in a later passage than Rp, i.e., Rp → W 1
p . By our assumption that W 1

q 99K Rp,

and the structure of the algorithm, we thus have that R1
q → W 1

q 99K Rp → W 1
p , and so

R1
q → W 1

p . This and W 0
p → Rq imply that for every write W̄ to Bypass[q][p] by p, either

W̄ → Rq (if W̄ is W 0
p or an earlier write) or R1

q → W̄ (if W̄ is W 1
p or a later write), as

desired.

Recall that W 1
q is the first write to Bypass[q][p] by q after Rq. Thus, by Claim 5.38.2,

for every write Ŵ by q to Bypass [q][p], either Ŵ → Rq (if Ŵ occurs before Rq) or

Rp → Ŵ (if Ŵ is W 1
q or a later write).

The following two corollaries to Lemma 5.38 follow as a result of the ordering of read

operations at line 136. They will also used to prove that the algorithm has O(N) RMR

complexity in the CC model.

Corollary 5.39. Let p and q be distinct processes, and assume that q starts executing a

passage Pq after p finishes writing false to Bypass [q][p] at line 132. There exists at most

two reads Rp by p to Doorway[q][p] at line 136 in p’s current passage such that Pq → Rp.
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Corollary 5.40. Let p and q be distinct processes, and assume that q starts executing a

passage Pq after p finishes writing false to Bypass [q][p] at line 132. There exists at most

four reads Rp by p to Ticket [q][p] at line 136 in p’s current passage such that Pq → Rp.

Next, we prove starvation freedom. The proof below is somewhat more intricate than

the proof of starvation freedom in Lemma 5.5 as a result of tickets being reset.

Lemma 5.41. The algorithm in Figure 5.7 satisfies starvation freedom.

Proof. Suppose, by way of contradiction, that starvation freedom does not hold. Let Y

be the set of live processes that are stuck forever in the trying protocol, and let p be the

process in Y with the smallest (ticket , process id) pair.

Below we show that p eventually removes all live processes from its predecessor set,

which implies that eventually p.predecessor set contains only faulty processes. As there

are at most k−1 faulty processes, this means that p eventually executes past the loop at

line 134 and enters the CS, contradicting that it is stuck forever in the trying protocol.

Process p is the process in Y with the smallest (ticket , process id) pair, and so by

inspection of the code at line 136 it follows that p eventually removes all processes in

Y \ {p} from its predecessor set.

It remains to show that p also removes from its predecessor set all the live processes

that are not eventually stuck forever in the trying protocol. We can split these processes

into two groups: live processes that execute through the CS infinitely often, and live pro-

cesses that eventually remain in the NCS forever. We consider the latter group first, and

let rNCS be any such process. Initially, Doorway[rNCS ][p] = false and Ticket [rNCS ][p] = 0.

After rNCS ’s last passage, Doorway[rNCS ][p] = false and Ticket [rNCS ][p] = 0 are also true.

By inspection of the code, it follows that p eventually evaluates the condition at line 136

for iteration i = rNCS to be true and removes rNCS from p.predecessor set .

We next consider the group of live processes that execute through the CS infinitely

often. Let rIO be any such process. Let WB
p be p’s write of false to Bypass [rIO ][p] at
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line 132, and let PrIO be a passage of rIO such that WB
p → PrIO . (This passage by rIO

exists since rIO executes through the CS infinitely often.) By Lemma 5.38 (with rIO

taking on the role of q), there exists at most one read Rp by p to Bypass [rIO ][p] such that

PrIO → Rp. By assumption, however, p does not crash and is stuck forever in the loop at

line 134, and so process p reads Bypass[i][p] at line 136 infinitely often for any process i

in its predecessor set. The preceding two sentences imply that p eventually removes rIO

from its predecessor set.

Thus p eventually removes from p.predecessor set every live process rIO that exe-

cutes through the CS infinitely often. We also established that p eventually removes

from p.predecessor set every live process rNCS that is eventually in the NCS forever,

and all processes in Y \ {p}. Hence the only processes that p does not remove from

p.predecessor set are faulty processes. There are at most k − 1 such processes, and

so p eventually executes past the loop at line 134 and enters the CS, contrary to the

assumption that p is stuck in the trying protocol forever.

The algorithm satisfies k-FCFS, but not the stronger FIFE property. To see why

FIFE is not satisfied, consider the following execution for k = 2 with processes p1, p2,

p3, and p4. Process p1 leaves the NCS and finishes executing the doorway, after which it

temporarily stops taking steps. Process p2 then leaves the NCS, executes the doorway and

the waiting room, and enters the CS. After this, p3 and p4 start executing the doorway.

For FIFE to be satisfied, p1 should now be able to enter the CS in a bounded number

of its own steps. However, this is not the case, because p1 cannot remove either p3 or

p4 from p1.predecessor set while p3 and p4 are in the doorway, thus preventing p1 from

advancing past the loop at line 134.

We now prove that k-FCFS is satisfied.

Lemma 5.42. The algorithm in Figure 5.7 satisfies the k-FCFS property.

Proof. Let Y be a set of processes such that |Y | = k, and assume all processes in Y
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finish the doorway before a process p starts the doorway (our first assumption). Further,

suppose, by way of contradiction, that p enters the CS before every process in Y (our

second assumption). We have that ∀q ∈ Y (i) Aq → Cp (by our first assumption); (ii)

Cq → EP p (by our first assumption); and (iii) Cp → EP q (by our second assumption).

By (i), (iii), and Lemma 5.34 we know that every process in Y chooses a ticket strictly

smaller than the ticket that p chooses. By this, (ii), and Lemma 5.36, it follows that

during p’s execution of the trying protocol, p does not remove any process in Y from

p.predecessor set until at least one process in Y completes the CS. This implies that the

size of p.predecessor set will be at least k until some process in Y executes through the

CS. Process p does not enter the CS until the size of its predecessor set is less than k,

and so p does not enter the CS until some process in Y enters the CS. This contradicts

that p enters the CS before every process in Y .

Lemma 5.43. Let p and q be distinct processes. In the CC model, while p is executing the

loop at line 134, process p makes at most eight RMRs reading Doorway[q][p] at line 136.

Proof. Suppose, by way of contradiction, that p makes at least nine RMRs while reading

Doorway[q][p] at line 136. Recall that in the CC model a process makes an RMR when

it reads a variable for the first time, writes a variable, and whenever a process reads a

variable for the first time after another process has written that variable. Therefore, the

reason for p’s first RMR to Doorway[q][p] at line 136 could be because p does not have

Doorway[q][p] in its cache, but the eight subsequent RMRs must be as a result of some

process invalidating p’s cached copy of Doorway[q][p] eight times. Processes q is the only

process that writes Doorway[q][p] (at lines 128 and 131). Hence, there must exist eight

writes by q to Doorway[q][p], each of which invalidates a copy of Doorway[q][p] in p’s

cache. Process q writes Doorway[q][p] at most twice per passage, and so q must start

executing a passage after p finishes its first RMR to Doorway[q][p], and q must finish that

passage before p starts its seventh RMR to Doorway[q][p]. Thus, there exists a passage
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Pq by q that starts after p finishes writing false to Bypass [q][p] at line 132, and Pq finishes

before p starts its seventh RMR. By Corollary 5.39, there exists at most two reads Rp by

p to Doorway[q][p] such that Pq → Rp. This means that p’s seventh and eighth RMRs

to Doorway[q][p] are the last two RMRs to Doorway[q][p] that p can make in its current

passage, which contradicts that p makes at least nine RMRs while reading Doorway[q][p]

at line 136.

We omit the proofs of the following two lemmas, as they are very similar to the proof

of Lemma 5.43.

Lemma 5.44. Let p and q be distinct processes. In the CC model, while p is executing

the loop at line 134, process p makes at most ten RMRs reading Ticket [q][p] at line 136.

Lemma 5.45. Let p and q be distinct processes. In the CC model, while p is executing

the loop at line 134, process p makes at most five RMRs reading Bypass [q][p] at line 136.

Lemma 5.46. A process p makes Θ(N) RMRs in a passage of the algorithm in Figure 5.7

in both the DSM and CC models.

Proof. We first do the proof for the CC model. The only shared variables that a process

p accesses in the loop at line 134 are Bypass [i][p], Ticket [i][p] and Doorway[i][p] (for each

i = 1..N). This, Lemmas 5.43, 5.44, 5.45, and the fact that there are N processes, imply

that p makes at most O(N) RMRs while p is executing the loop at line 134. Elsewhere in

the algorithm, it is easily seen by inspection that p makes Θ(N) RMRs. Thus the RMR

complexity is Θ(N) in the CC model.

The result also follows for the DSM model by observing that p makes no RMRs while

in the loop at line 134, as the variables Bypass[i][p], Ticket [i][p], and Doorway[i][p] (for

each i = 1..N) are local to p.

Theorem 5.47. The algorithm in Figure 5.7 satisfies k-exclusion, starvation freedom,

and k-FCFS. Moreover, it has RMR complexity Θ(N) in the DSM and CC models.
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Proof. The result follows from Lemmas 5.37, 5.41, 5.42, and 5.46.

5.9 k-Exclusion With Ticket Resetting and FIFE

(Atomic RWs)

Our goal in this section is to modify the algorithm in Figure 5.7 so that it also satisfies

FIFE. The modifications required turn out to be non-trivial. To simplify things, we first

present a version of the algorithm, in Figure 5.8, that uses atomic reads and writes. An

embellished version that works even with non-atomic reads and writes is presented in

Section 5.10.

The algorithm in Figure 5.8 satisfies k-exclusion, starvation freedom, FIFE, and resets

tickets in the exit protocol. The doorway consists of lines 145..153, the waiting room

consists of lines 154..164, and the exit protocol consists of lines 166..167.

Note that on line 167 we can now “blind-set” Bypass[p][i] to true, while at the corre-

sponding point in he algorithm of Figure 5.7 (see line 141) we set Bypass [p][i] to true only

after verifying that its present value is false. This simplification is due to the fact that

we are now assuming that reads and writes are atomic. As we explained in the previous

section, blind-setting Bypass[p][i] to true on line 141 can lead to a violation of starvation

freedom when reads and writes are non-atomic. However, when atomic reads/writes are

used, this problem cannot occur. We now explain how FIFE is implemented.

The FIFE property states that if a process p doorway-precedes a process q, and q

enters the CS, then p can enter the CS in a bounded number of its own steps. Intuitively,

the algorithm in Figure 5.8 satisfies FIFE by ensuring that a process that is about to

enter the CS first “captures” processes that doorway-preceded it. If a process detects

that it has been captured, it is free to enter the CS. At a high-level, this idea is similar

to that used by the algorithm we described in Section 5.6, which satisfies FIFE but does

not reset tickets in the exit protocol. The capturing mechanism is considerably more
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complicated now that tickets are to be reset in each passage, as we explain below.

To implement the capturing mechanism, we introduce a new shared two-dimensional

array, Capture[i][j]. Whenever a process q attempts to capture a process p, q writes the

ticket that q chose in the doorway to Capture[q][p] (line 164). In the waiting room, process

p monitors whether it has been captured by q by checking if the entry Capture[q][p] stores

a value that is larger than the ticket that p chose in the doorway (line 163). If so, then

p is free to enter the CS. This simple mechanism ensures FIFE is satisfied, since if p

doorway-precedes q, then q chooses and writes to Capture [q][p] a ticket that is strictly

larger than the ticket p chooses.

Since tickets are reset in the exit protocol, each process p needs to also reset the

entries Capture[j][p] (for all j) somewhere in the algorithm. If not, then it is possible for

p to think that it has been captured in some passage, when in fact it was captured in

an earlier passage. It may appear that the natural place to reset these entries is the exit

protocol, where the tickets are reset; this, however, can lead to problems: Process q may

write to Capture[q][p] after p has finished the exit protocol, thus leading to a situation in

which p starts a new passage with the Capture [q][p] entry not reset. So, in our algorithm,

process p actually resets Capture[q][p] in the doorway at line 149. In this manner, p resets

Capture[q][p] in the same passage in which it checks whether it has been captured by q.

The capturing mechanism as we have described it so far is similar to that used in the

algorithm in Figure 5.5, except for the resetting of variables Capture [q][p] (see line 149).

This resetting, as we have seen, is needed so that p does not mistakenly consider itself

captured by q if p happens to choose a small ticket in a subsequent passage — an

eventuality that is possible now that tickets are reset to 0 after each passage.

The resetting of tickets necessitates another, perhaps subtler, change to the capturing

mechanism. In the algorithm in Figure 5.5 it was perfectly fine for a process to attempt

to capture all other processes (see the loop on line 99). It was harmless for a process to

attempt to capture even processes whose doorway executions did not precede its own.
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Now that tickets are reset in each passage, this is no longer the case. A process must

now refrain from attempting to capture certain processes: note that the loop on line 164

is not executed for processes in the set ignore set , which was previously computed on

lines 151..153. If a process does not refrain from attempting to capture the processes in

ignore set , a violation of k-exclusion may result.

To gain some intuition about the problem and its solution, suppose, temporarily,

that a process attempts to capture all processes; i.e., assume that the loop on line 164 is

executed for all i ∈ {1..N}. In this version of the algorithm, the possibility exists that

a process attempts to capture another process even when this is not required to satisfy

FIFE and, in doing so, can cause a violation of k-exclusion. First we consider a simple

scenario for k > 1 that appears benign and does not lead to a violation of k-exclusion. We

then show how to modify the scenario so that k-exclusion is violated. Suppose processes

p and q execute concurrently through the doorway and end up choosing tickets so that

p gets a smaller ticket than q. Process p resets Capture [q][p] (line 149), after which

process q advances into the waiting room, captures p (line 164), and finally q enters the

CS. (Process q can enter the CS even though it has a larger ticket than p since k > 1.)

When process p enters the loop at line 158, it can also enter the CS: p will either detect

that it is captured, or see that it has a smaller ticket than q. In this scenario, the fact

that q captured p, despite being unnecessary for FIFE, is harmless and does not lead

to a violation of k-exclusion, since k > 1. However, by introducing processes r1 and r2

into this scenario and having them execute their passages concurrently with p and q, the

following violation of k-exclusion (for k = 2) can happen:

1. Process p and q start choosing a ticket concurrently.

2. Process q chooses a ticket (line 147) and finishes the doorway.

3. Process p chooses a ticket smaller than q’s ticket (line 147), but does not yet

announce it (line 148). (Process p chooses a smaller ticket than q as a result of



Chapter 5. The k-Bakery 132

other processes that were still in the CS while q was choosing its ticket, but then

returned to the NCS before p read the ticket values associated with those processes.)

4. Process q reaches the loop at line 164, but does not yet attempt to capture any

processes. (Process q can advance past the loop at line 158 while p is still in the

doorway since k = 2.)

5. Processes r1 and r2 enter the doorway and start choosing their tickets (line 147).

They read p’s ticket, which is currently 0, but they do not yet read q’s ticket.

6. Process p announces its ticket, resets Capture[q][p], and finishes the doorway.

7. Process q writes its ticket, which is larger than p’s ticket, to Capture [q][p] at line 164,

thus capturing p. Process q then executes through the CS and the exit protocol,

where q resets its ticket (line 166), after which q returns to the NCS.

8. Processes r1 and r2 finish the doorway, each choosing a smaller ticket than the

tickets chosen by p or q. (The reason for this is that when r1 and r2 read the tickets

announced by p and q, they read the value 0.)

9. Process p detects that it has been captured (line 163) and enters the CS.

10. Processes r1 and r2 eliminate from their predecessor sets all processes in the NCS

(i.e., processes with ticket value 0), including q, and all processes with higher num-

bered tickets (line 160), including p. This leaves at most 1 < k = 2 element in the

predecessor sets of r1 and r2. In particular, r1 possibly has r2 in its predecessor set,

and r2 possibly has r1 in its predecessor set.

11. Processes r1 and r2 enter the CS.

12. There are now 3 processes in the CS, and k-exclusion (for k = 2) is violated.

By introducing processes r1, r2, ... , rk, this scenario can be generalized to demonstrate

a violation of k-exclusion for any k > 1
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The reason that the above scenario leads to a violation of k-exclusion is because q

resets its ticket entries in the exit protocol. If q did not do this, then r1 and r2 would

have chosen tickets larger than both p and q, and k-exclusion would be satisfied.

To fix this problem, either we need to prevent q from resetting its ticket entries before

r1 and r2 have had a chance to read q’s ticket, or we need to ensure that r1 and r2 do not

read p’s ticket before p has announced it. Unfortunately, these solutions are not viable.

The former solution is not viable, because it would require q to wait for an indeterminate

amount of time before executing its exit protocol, and the latter solution is not viable,

because r1 and r2 have no control over when p announces its ticket. We can, however,

do something that achieves a similar result: we can ensure that q attempts to capture p

only under circumstances necessary to satisfy FIFE.

Ideally, we would like for process q to attempt to capture p if and only if p finishes

the doorway before q starts the doorway. This is not possible, but the following approx-

imation to this ideal is sufficient for our purposes. We modify the algorithm so that: (i)

if p finishes the doorway before q starts the doorway, then q attempts to capture p; and

(ii) if q attempts to capture p, then p finishes announcing its ticket (line 148) before q

starts choosing its ticket (line 147). This feature of the algorithm does not prevent all

unnecessary capture attempts, but it does prevent the ones that lead to the bad scenario

that we outlined, and it turns out that this is enough to restore k-exclusion. Revisiting

the scenario, we see that for q to attempt to capture p, p must announce its ticket before q

chooses its ticket. Since processes r1 and r2 leave the NCS after q finishes the doorway, p

will have already announced its ticket when processes r1 and r2 try reading it. Therefore,

r1 and r2 will choose a larger ticket than p chooses, and k-exclusion will not be violated.
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Figure 5.8: (Atomic RWs) k-Exclusion with FIFE and ticket resetting for process
p ∈ {1, ..., N}

shared variables:
Ticket : array[1..N ][1..N ] of N init all 0
Doorway: array[1..N ][1..N ] of boolean init all false
Bypass : array[1..N ][1..N ] of boolean init all false
Capture : array[1..N ][1..N ] of N init all 0
DWYBypass : array[1..N ][1..N ] of boolean init all false

(DSM model: Ticket [i][p], Capture [i][p], Bypass[i][p], Doorway[i][p] local to p ∀i)

private variables:

predecessor set , ignore set : Set of N

ticket : N
captured : boolean

loop143

NCS144

foreach i ∈ {1..N} do Doorway[p][i] := true145

foreach i ∈ {1..N} do DWYBypass[i][p] := false146

ticket := 1 + max(Ticket [1][p],Ticket [2][p], ...,Ticket [N ][p])147

foreach i ∈ {1..N} do Ticket [p][i] := ticket148

foreach i ∈ {1..N} do Capture [i][p] := 0149

foreach i ∈ {1..N} do DWYBypass[p][i] := true150

ignore set := ∅151

foreach i ∈ {1..N} do152

if Doorway[i][p] ∨ DWYBypass[i][p] then ignore set := ignore set ∪ {i}153

foreach i ∈ {1..N} do Doorway[p][i] := false154

foreach i ∈ {1..N} do Bypass [i][p] := false155

predecessor set := {1..N} \ {p}156

captured := false157

while |predecessor set | ≥ k ∧ ¬captured do158

foreach i ∈ predecessor set do159

if Bypass [i][p] ∨ (¬Doorway[i][p] ∧ (Ticket [i][p] = 0 ∨ (ticket , p) <160

(Ticket [i][p], i))) then
predecessor set := predecessor set \ {i}161

foreach i ∈ {1..N} do162

if ticket < Capture [i][p] then captured := true163

foreach i ∈ {1..N} \ ignore set do Capture [p][i] := ticket164

CS165

foreach i ∈ {1..N} do Ticket [p][i] := 0166

foreach i ∈ {1..N} do Bypass [p][i] := true167

end loop168
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We implement the preceding feature by using the shared array DWYBypass and the

private variable ignore set . When q starts the doorway, process q sets DWYBypass[p][q]

to be false at line 146. The only other time that DWYBypass[p][q] is written is when

p sets it to be true at line 150, near the end of the doorway. Before q finishes the

doorway, it checks the value of Doorway[p][q] and DWYBypass[p][q] at line 153 to test

whether p concurrently executed the “main part” of the doorway with q. If q reads true

in Doorway[p][q], then p is still in the doorway. If q reads true in DWYBypass[p][q], then

p must have been in the doorway at least once while q was executing it. In either of

these cases, q adds p to q.ignore set , and then refrains from attempting to capture the

processes in ignore set before entering the CS (line 164).

We do not provide a proof of correctness for this version of the algorithm. Instead,

in the next section we describe the enhancements necessary to make the algorithm work

using only non-atomic reads and writes, and then prove the correctness of the enhanced

algorithm. The same sequence of lemmas that are used in the proof of the enhanced

algorithm could also be used to prove the correctness of the simpler algorithm in Fig-

ure 5.8, except the arguments used in the proofs of the lemmas could also be simplified

in a number of places.

5.10 k-Exclusion With Ticket Resetting and FIFE

(Non-atomic RWs)

In this section we enhance the algorithm in Figure 5.8 so that it works in the model

in which we use only non-atomic reads and writes. The new algorithm is given in Fig-

ure 5.10 (with associated variable definitions in Figure 5.9). It satisfies k-exclusion,

starvation freedom, FIFE, and resets tickets in the exit protocol. The doorway consists

of lines 171..181, the waiting room consists of lines 182..196, and the exit protocol consists

of lines 198..200.
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We explain how we arrived at the algorithm in Figure 5.10 by explaining what can

go wrong when using non-atomic reads and writes in the algorithm in Figure 5.8. One

change we made has to do with the bypass mechanism at line 167 (lines 199..200 in the

new algorithm). We reintroduced the condition check at line 200. This condition was

present in the algorithm in Figure 5.7 (line 141), where we made use of non-atomic reads

and writes, but was removed in the algorithm in Figure 5.8 (line 167), where we made use

of atomic reads and writes. As we explained in Section 5.8, this condition is necessary

to ensure that starvation freedom is not violated when non-atomic reads and writes are

being used.

Another change, for a similar reason, affects the DWYBypass shared variable. In-

stead of blind-setting DWYBypass [p][i] to true, as in line 150 in Figure 5.8, p now sets

DWYBypass[p][i] to true only if it previously found it to be false (see line 178 in Fig-

ure 5.10). Before a process p finishes the doorway, p needs to check whether there was

some process q that executed the “main part” of the doorway concurrently with p. If this

is the case, then p adds q to p.ignore set , and then does not attempt to capture q before

entering the CS. To check if q executed the doorway concurrently with p, p checks at

line 153 whether Doorway[q][p] ∨ DWYBypass[q][p] is true. The problem that can arise

when using non-atomic reads and writes is that q may execute multiple passages after

p executes line 146 and before p reaches line 153. In this case, p should read true from

DWYBypass[q][p] and add q to p.ignore set . However, if q writes DWYBypass[q][p] at

line 150 concurrently with p’s read of DWYBypass [q][p], p’s read may incorrectly return

false. To prevent this in the new algorithm, q writes DWYBypass [q][p] at line 178 only

if DWYBypass [q][p] is false.

A similar problem can arise if q executes a passage multiple times and tries capturing

p in each passage. In particular, q may repeatedly write Capture[q][p] at line 164 at

the same time as p reads Capture[q][p] at line 163. This can result in p reading a value

from Capture [q][p] that is much smaller than the value that q writes, and p incorrectly
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concluding that it has not been captured. As a result, FIFE may be violated. To fix

this problem, we modify the algorithm so that q writes Capture[q][p] at line 164 only if

Capture[q][p] < Ticket [p][q], i.e., q writes Capture[q][p] only if the value in Capture[q][p] is

too small to allow p to detect that it has been captured. This is essentially what is being

tested for in the new algorithm at line 195. The condition at line 195, however, is slightly

more complex than we just described, due to there being three copies of Capture [q][p]

(i.e., Capture [q][p][1], Capture [q][p][2], and Capture[q][p][3]). The reason we need to use

three copies of Capture [q][p] is to protect against other bad scenarios, which we now

describe.

If we only had one copy of Capture [q][p] (i.e., Capture[q][p][1]), and references to

the other two copies (i.e., Capture[q][p][2], and Capture[q][p][3]) were deleted, then the

following scenario could happen. The scenario is for k = 2 and involves processes p, q,

and r.

1. Process p finishes the doorway before q starts the doorway.

2. Process q leaves the NCS, executes through the waiting room, and temporarily

stops taking steps before attempting to capture p. That is, q temporarily stops

taking steps before writing Capture [q][p][1] (line 196).

3. Process p executes through the CS and returns to the NCS.

4. Process r leaves the NCS and enters the CS.

5. Process p leaves the NCS and enters the waiting room. It starts reading

Capture[q][p][1] to determine if it has been captured (line 193).

6. Process q starts writing Capture [q][p][1] (line 196).

7. Process p incorrectly reads a value from Capture[q][p][1] larger than its ticket, and

detects that it has been captured.
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8. Process p enters the CS.

9. Process q enters the CS.

10. Processes p, q, and r are all in the CS, and k-exclusion (for k = 2) is violated.

To fix this problem, we employ a more sophisticated version of a technique used in the

algorithm in Figure 5.6 in Section 5.7. What we do is triplicate Capture [q][p] (i.e., create

Capture[q][p][1], Capture [q][p][2], and Capture [q][p][3]) and have process p read and write

the copies at lines 176, 191..193 in the opposite order that q writes them at line 196.

This prevents the above problematic scenario from happening. Process p may incorrectly

read one of the copies of Capture[q][p] due to a concurrent write by q. However, if p

incorrectly reads more than one copy of Capture [q][p] due to a concurrent write by q, it

must be the case that q starts a subsequent passage and attempts to capture p a second

time while p is in the waiting room. This is because p and q read/write the copies of

Capture[q][p] in the opposite order. In the above scenario, if q starts a second passage

while p is in the waiting room, it will detect that p and r have smaller tickets, and thus

will never advance to the part of the waiting room where q can attempt to capture p a

second time.

In the algorithm in Figure 5.6, creating two copies of Capture[q][p] was sufficient,

but this is not the case in the algorithm in Figure 5.10. The latter algorithm requires a

third copy of Capture [q][p] because it resets Capture entries in the doorway, which is not

done by the former algorithm. To understand what can go wrong in Figure 5.10 if we

only had Capture[q][p][1] and Capture[q][p][2], suppose all references to Capture [q][p][3]

are removed, and consider the scenario below. The scenario is for k = 2, and involves

processes p, q, and r (steps 1-4 are exactly as in the preceding scenario):

1. Process p finishes the doorway before q starts the doorway.

2. Process q leaves the NCS, executes through the waiting room, and temporarily
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stops taking steps before attempting to capture p. That is, q temporarily stops

taking steps before writing Capture [q][p][1] (line 196).

3. Process p executes through the CS and returns to the NCS.

4. Process r leaves the NCS and enters the CS.

5. Process p leaves the NCS and enters the doorway. It sets Capture [q][p][2] = 0, and

then starts writing 0 to Capture[q][p][1].

6. Process q writes Capture [q][p][1] concurrently with p’s write. The end result of the

concurrent writes is that Capture [q][p][1] contains a value larger than the ticket

that p chose.

7. Process q starts writing Capture [q][p][2].

8. Process p reads Capture[q][p][2] at line 192 concurrently with q’s write, reading a

value larger than the ticket p chose. Process p evaluates ticket < Capture [q][p][2]

to be true and proceeds to line 193.

9. Process p evaluates the condition ticket < Capture[q][p][1] at line 193 to be true

(see step 6 above), and sets captured = true.

10. Process p enters the CS.

11. Process q enters the CS.

12. Processes p, q, and r are all in the CS, and k-exclusion (for k = 2) is violated.



Chapter 5. The k-Bakery 140

Triplicating Capture [q][p] prevents the preceding scenario from happening. The prob-

lem was that p could read two “tainted” copies of Capture[q][p] in a row and erroneously

detect that it was captured. It is impossible, however, for p to read three “tainted”

copies of Capture [q][p] in a row and not actually have a clear path into the CS. If p

reads “tainted” values in all three copies of Capture[q][p], either because of preceding

concurrent writes, or a write concurrent with p’s read, then q must have attempted to

capture p twice, and in the second attempt q will have started its passage after p finished

the doorway. In such a case, p can enter the CS without danger of breaking k-exclusion.

Note that the order in which the three disjunctions at line 195 are evaluated is unim-

portant for the correctness of the algorithm. Also, the variable Ticket [i][p] only needs to

be read once per value of i at line 195, i.e., the same value of Ticket [i][p] can be used in

the evaluation of each of the three disjunctions.

Figure 5.9: Variable definitions for Figure 5.10

shared variables:
Ticket : array[1..N ][1..N ] of N init all 0
Doorway: array[1..N ][1..N ] of boolean init all false
Bypass : array[1..N ][1..N ] of boolean init all false
Capture : array[1..N ][1..N ][1..3] of N init all 0
DWYBypass : array[1..N ][1..N ] of boolean init all false

(DSM model: Ticket [i][p], Capture[i][p][1..3], Bypass [i][p], Doorway[i][p] local to p ∀i)

private variables:

predecessor set , ignore set : Set of N

ticket : N
captured : boolean
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Figure 5.10: (Non-atomic RWs) k-Exclusion with FIFE and ticket resetting for
process p ∈ {1, ..., N}

loop169

NCS170

foreach i ∈ {1..N} do Doorway[p][i] := true171

foreach i ∈ {1..N} do DWYBypass[i][p] := false172

ticket := 1 + max(Ticket [1][p],Ticket [2][p], ...,Ticket [N ][p])173

foreach i ∈ {1..N} do Ticket [p][i] := ticket174

foreach i ∈ {1..N} do175

Capture[i][p][3] := 0;Capture[i][p][2] := 0;Capture[i][p][1] := 0176

foreach i ∈ {1..N} do177

if ¬DWYBypass[p][i] then DWYBypass[p][i] := true178

ignore set := ∅179

foreach i ∈ {1..N} do180

if Doorway[i][p] ∨ DWYBypass[i][p] then ignore set := ignore set ∪ {i}181

foreach i ∈ {1..N} do Doorway[p][i] := false182

foreach i ∈ {1..N} do Bypass [i][p] := false183

predecessor set := {1..N} \ {p}184

captured := false185

while |predecessor set | ≥ k ∧ ¬captured do186

foreach i ∈ predecessor set do187

if Bypass [i][p] ∨ (¬Doorway[i][p] ∧ (Ticket [i][p] = 0 ∨ (ticket , p) <188

(Ticket [i][p], i))) then
predecessor set := predecessor set \ {i}189

foreach i ∈ {1..N} do190

if ticket < Capture [i][p][3] then191

if ticket < Capture[i][p][2] then192

if ticket < Capture [i][p][1] then captured := true193

foreach i ∈ {1..N} \ ignore set do194

// Evaluation order of disjunctions is unimportant.

if
∨

j∈{1..3}Capture [p][i][j] ≤ Ticket [i][p] then195

Capture [p][i][1] := ticket ;Capture[p][i][2] := ticket ;Capture[p][i][3] :=196

ticket

CS197

foreach i ∈ {1..N} do Ticket [p][i] := 0198

foreach i ∈ {1..N} do199

if ¬Bypass [p][i] then Bypass [p][i] := true200

end loop201

One of the interesting aspects of this algorithm that was not part of Lamport’s original
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Bakery algorithm [32] is that it uses multi-writer multi-reader safe registers, i.e., multiple

processes can write the same shared variable concurrently and the result of such a write

is arbitrary. In particular, as demonstrated in the scenario above, processes p and q can

concurrently write Capture [q][p][∗]. Surprisingly, despite the fact that Capture [q][p][∗]

can store an arbitrary value after a concurrent write, the algorithm is still correct. All

prior work on mutual exclusion algorithms using safe registers that we are familiar with,

including of course Lamport’s Bakery algorithm, employs only single-writer multi-reader

registers.

In the remainder of this section we prove the algorithm’s correctness.

5.10.1 Preliminary Lemmas

Let Cp denote the operation in which process p chooses its ticket at line 173, let Ap

denote the operation in which p announces its ticket at line 174, and let EPp denote the

operation in which p executes its exit protocol at lines 198..200.

The following lemma and corollary are analogues to Lemma 5.34 and Corollary 5.35.

The proof of the lemma below is nearly the same as the proof of Lemma 5.34, modulo

line number differences.

Lemma 5.48. Let p and q be distinct processes. If Ap → Cq and Cq → EPp, then

tp < tq, where tp and tq are the tickets chosen by p and q, respectively.

Proof. Process p announces its ticket (line 174) before q chooses its ticket (line 173), and

process q chooses its ticket (line 173) before p resets its ticket (line 198). Therefore the

value that q reads from Ticket [p][q] at line 173 is equal to tp. Process q adds one to this

value, and so the ticket tq that q chooses satisfies tq > tp.

As a corollary to the preceding lemma, we state it in the following logically equivalent

form:
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Corollary 5.49. Let p and q be distinct processes, and suppose p and q choose tickets tp

and tq. If tq ≤ tp and Cq → EPp, then Cq 99K Ap.

The following lemma is an analogue to Lemma 5.36. Its proof follows the same

structure as the proof of Lemma 5.36.

Lemma 5.50. Let p and q be distinct processes, and suppose p and q choose tickets tp

and tq, respectively. If (tq, q) < (tp, p) and Cq 99K Ap then p does not remove q from

p.predecessor set before EP q starts.

Proof. Assume that (tq, q) < (tp, p) and that Cq 99K Ap. Suppose, by way of contradic-

tion, that p removes q from p.predecessor set before EP q starts.

Before p removes q from its predecessor set, p reads Bypass[q][p], Doorway[q][p], and

Ticket [q][p] (in that order) to evaluate the condition at line 188. Let RB
p , R

D
p , and RT

p

be these reads, respectively.

Claim 5.50.1. RB
p returns false.

Proof. The only processes that write into Bypass[q][p] are p and q. Process p sets

Bypass[q][p] = false at line 183 (denote this write operation WB
p ) and process q may

set Bypass[q][p] = true at line 200 of the exit protocol. There are no other places where

Bypass[q][p] is written. By inspection of the algorithm, WB
p → RB

p .

Let WB
q be any write operation by q into Bypass[q][p]. It remains to show that either

WB
q → WB

p or RB
p → WB

q . (To see why this suffices, note that if this is the case for

all writes WB
q by q into Bypass [q][p], there is a well-defined last write into Bypass [q][p]

that precedes RB
p , namely WB

p , which sets this variable false, and there are no writes into

Bypass[q][p] concurrent with RB
p .)

As we observed, q only writes Bypass[q][p] in its exit protocol. So, to prove that either

WB
q → WB

p or RB
p → WB

q it suffices to prove that: (1) if EP ′
q is q’s execution of the exit

protocol in its preceding passage, then EP ′
q → WB

p , and (2) RB
p → EP q.
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For (1) we have that, by the structure of the algorithm and the hypothesis of the

lemma, EP ′
q → Cq 99K Ap → WB

p , from which it follows that EP ′
q → WB

p .

For (2) we have that, by the structure of the algorithm, RB
p ends before p removes

q from p.predecessor set , which, by the hypothesis of this lemma, happens before EP q

starts. Thus, RB
q → EP q. (Claim 5.50.1)

By Claim 5.50.1, and lines 188..189, for p to remove q from p.predecessor set , RD
p

must return false, and RT
p must return 0 or some value t such that (tp, p) < (t, q).

Let WD
q and WD+

q be the successive write operations in which q writes, respectively,

true and false into Doorway[q][p] at lines 171 and 182.

Claim 5.50.2. WD+

q 99K RD
p

Proof. By assumption and the structure of the algorithm, WD
q → Cq 99K Ap → RD

p , and

so WD
q → RD

p . If RD
p → WD+

q , then WD
q → RD

p → WD+

q . That is, RD
p occurs entirely

between two successive writes to Doorway[q][p], and hence must return the value written

by WD
q , which is true. This, however, contradicts that RD

p must return false. Therefore

it is not the case that RD
p → WD+

q , and so, WD+

q 99K RD
p . (Claim 5.50.2)

Let W T
q and W T+

q be the successive write operations in which q writes tq and 0,

respectively, into Ticket [q][p] at lines 174 and 198. By inspection of the order of op-

erations on line 188, we have that RD
p → RT

p . This and Claim 5.50.2 imply that

W T
q → WD+

q 99K RD
p → RT

p , and so W T
q → RT

p .

RT
p finishes before process p removes q from p.predecessor set , and by assumption,

process p removes q from p.predecessor set before EP q starts. Therefore RT
p → EP q.

Furthermore, W T+

q ⊆ EP q, and so RT
p → W T+

q . This and the fact that W T
q → RT

p

(established in the preceding paragraph) imply that W T
q → RT

p → W T+

q . That is, RT
p

occurs between two successive writes into Ticket [q][p], and hence must return the value

written by W T
q , which is tq. Processes always choose non-zero tickets, so tq 6= 0.
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Recall that RB
p , RD

p , and RT
p are p’s reads of Bypass[q][p], Doorway[q][p], and

Ticket [q][p] when p evaluates the condition at line 188 before p removes q from

p.predecessor set . By Claim 5.50.1, RB
p returns false. So, by the condition at line 188,

RD
p must return false, and RT

p must return zero or a value t such that (tp, p) < (t, q). We

established in the preceding paragraph that RT
p returns tq 6= 0. Therefore (tp, p) < (tq, q),

contrary to the assumption that (tq, q) < (tp, p).

5.10.2 Capturing Lemmas

We now present some lemmas about the capturing mechanism. These lemmas will be

used to prove that k-exclusion holds.

We previously defined what it means for a process to attempt to capture another

process, and also what it means for a process to detect capture, in Section 5.6 and

Section 5.7. As a result of the triplication of the entries in the Capture array, we need

to redefine these terms here.

Let Dp
q be the operation in which a process q detects capture by a process p at

lines 191–193, i.e., Dp
q is the operation in which q reads q.ticket < Capture [p][q][3],

q.ticket < Capture [p][q][2], and q.ticket < Capture[p][q][1] and consequently sets

q.captured = true at line 193. Let Xq
p denote the operation in which a process p at-

tempts to capture a process q at line 196, i.e., Xq
p is the operation in which p writes

its ticket to Capture[q][p][1], Capture [q][p][2], and Capture [q][p][3] at line 196. Note that

these operations are non-atomic.

Recall the discussion in Section 5.9 where we illustrated that processes should not

attempt to capture each other if the passage of the “main” part of their doorways is

concurrent. The reason for this is that if processes do attempt to capture each other in an

unrestricted manner, a situation can arise in which k-exclusion is violated. The following

lemma — more precisely, its contrapositive, stated in Corollary 5.52 — essentially says

that if a process tries capturing another one, then the processes did not execute the
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“main” part of their doorways concurrently. This lemma is “new” in that it has no

analogue in any of the preceding sections.

Lemma 5.51. If some processes r and p execute passages such that Cr 99K Ap and

Cp 99K Ar (i.e., r and p execute lines 173..174 concurrently), then r does not attempt to

capture p.

Proof. Assume that some processes r and p execute passages such that Cr 99K Ap and

Cp 99K Ar. Either r reads true in Doorway[p][r] at line 181, or not. In the former case,

r adds p to r.ignore set at line 181. By inspection of line 194, r does not attempt to

capture any process in r.ignore set , and so the lemma holds.

In the latter case r reads false in Doorway[p][r] at line 181. Let RD
r denote this read,

and let RB
r denote r’s read of DWYBypass[p][r] at line 181. We argue that RB

r returns

true.

LetWB
r be the write by r at line 172 where r sets DWYBypass[p][r] = false, and let RB

p

be p’s read of DWYBypass[p][r] at line 178. Process pmay write true to DWYBypass[p][r]

at line 178 depending on the value returned by RB
p . If the write occurs, let WB

p denote

the write operation in which p writes true to DWYBypass[p][r] at line 178. If the write

does not occur, thenWB
p denotes the first read operation that p executes after RB

p finishes

(either the read of another DWYBypass entry in the next iteration of the loop at line 177,

or the read of a Doorway entry in the first iteration of the loop at line 181).

Claim 5.51.1. WB
r → RB

p → WB
p → RB

r

Proof. By assumption, Cr 99K Ap, and so, by the structure of the algorithm: WB
r →

Cr 99K Ap → RB
p → WB

p . This implies that WB
r → RB

p → WB
p . It remains to show that

WB
p → RB

r . Suppose, by way of contradiction, that this is not the case, i.e., RB
r 99K WB

p .

LetWD
p andWD+

p be p’s successive writes of true and false to Doorway[p][r] at line 171

and line 182, respectively. Recall that RD
r is r’s read of Doorway[p][r] at line 181 and

returns false. By assumption, Cp 99K Ar, and so: WD
p → Cp 99K Ar → RD

r → RB
r 99K
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WB
p → WD+

p . This implies that WD
p → RD

r → WD+

p . WD
p and WD+

p are successive writes

to Doorway[p][r], so RD
r must return the value written by WD

p , which is true. However,

this contradicts that RD
r returns false. (Claim 5.51.1)

We will now prove that RB
r returns true. There are two cases, depending on the value

returned by RB
p .

Case 1: RB
p returns false. In this case, WB

p is an operation that writes true to

DWYBypass[p][r]. Let W be any write operation on DWYBypass[p][r] other than WB
p .

We will prove that either W → WB
p or RB

r → W . Once we do so, since WB
p → RB

r (by

Claim 5.51.1), it follows that RB
r returns the same value as written by WB

p , i.e., true,

as wanted. So it remains to prove that for any write operation W on DWYBypass[p][r]

other than WB
p , either W → WB

p or RB
r → W . By inspection of the algorithm, only p

and r ever write DWYBypass [p][r], at line 178 and line 172, respectively. So, W is either

performed by process p or process r:

Case 1a: W is performed by process r. Observing that process r only writes

DWYBypass[p][r] at line 172, and all writes by r at this line are totally ordered by →,

Claim 5.51.1 implies that W → WB
p (if W is WB

r or an earlier write) or RB
r → W (if

W occurs in a later passage by r than the one in which WB
r and RB

r occur), as wanted.

(End of Case 1a)

Case 1b: W is performed by process p. If W → WB
p then we are done. Oth-

erwise, WB
p → W , since (i) W is not WB

p (by assumption), and (ii) all writes by p to

DWYBypass[p][r] are totally ordered by →. In this case we will prove that RB
r → W .

In fact, it suffices to prove that RB
r → W for the first (in the sense of the total order

defined by →) write operation W on DWYBypass[p][r] by process p such that WB
p → W .

(This is well-defined, since → totally orders all operations of p.) To see this, let R be

the read operation on DWYBypass [p][r] (at line 178) by process p that returns false and

immediately precedes W .
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Claim 5.51.2. There exists a write WB+
r by process r on DWYBypass[p][r] (at line 172)

such that (i) WB
r → WB+

r , and (ii) WB+
r 99K R.

Proof. Suppose, by way of contradiction, that the claim is false. That is, assume that

either WB
r is the last operation by r to write to DWYBypass[p][r], or for every write Ŵ

by process r on DWYBypass[p][r] if WB
r → Ŵ then R → Ŵ .

Since R and W belong to a later passage of p than RB
p and WB

p , we have WB
p → R.

Also, by Claim 5.51.1, WB
r → WB

p . So, we have that WB
r → WB

p → R. For every write

Ŵ on DWYBypass[p][r] by r, either Ŵ → WB
p (if Ŵ = WB

r , or is a preceding write) or

R → Ŵ (if WB
r is not the last write by r to DWYBypass[p][r]). Similarly, for every write

Ŵ on DWYBypass [p][r] by p other than WB
p , either Ŵ → WB

p or R → Ŵ (if Ŵ = W or

a later write). Since no process other than p or r writes DWYBypass[p][r], it follows that

R returns the value written by WB
p , i.e., true. This contradicts that R returns false.

Consider the write WB+
r that exists by Claim 5.51.2. Since WB

r → WB+
r , WB+

r

must occur in a passage by r after the one in which r executes WB
r and RB

r . Thus

RB
r → WB+

r 99K R → W , and so RB
r → W , as we wanted for this subcase. (End of

Case 1b, and Case 1.)

Case 2: RB
p returns true. In this case, WB

p is not a write operation on

DWYBypass[p][r] — it is merely an operation that reads some other variable. (In partic-

ular, by definition, WB
p is either the read by p of another DWYBypass entry in the next

iteration of the loop at line 177 after RB
p , or the read of a Doorway entry by p in the first

iteration of the loop at line 181). By Claim 5.51.1, RB
p → RB

r . We will now prove that

for every write W on DWYBypass[p][r], either W → RB
p , or R

B
r → W . Once we do so,

it follows that RB
p and RB

r return the same value; since, by the hypothesis of this case,

RB
p returns true, so does RB

r , as wanted.

It remains to prove that for every write W on DWYBypass[p][r], either W → RB
p , or

RB
r → W . By inspection of the algorithm, only p and r ever write DWYBypass[p][r], at
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line 178 and line 172, respectively. So, W is either performed by process p or process r:

Case 2a: W is performed by process r. Observing that process r only writes

DWYBypass[p][r] at line 172, and all writes by r at this line are totally ordered by →,

Claim 5.51.1 implies that W → RB
p (if W = WB

r or belongs to an earlier passage), or

RB
r → W (if W belongs to a later passage of r), as wanted. (End of Case 2a)

Case 2b: W is performed by process p. IfW → RB
p then we are done. Otherwise,

RB
p → W , since all operations by p are totally ordered by →. In this case we will prove

that RB
r → W . In fact, it suffices to prove that RB

r → W for the first (in the sense of the

total order defined by →) write operation W on DWYBypass[p][r] by process p such that

RB
p → W . (This is well-defined, since → totally orders all operations of p.) To see this,

let R be the read operation on DWYBypass[p][r] (at line 178) by process p that returns

false and immediately precedes W . Note that R and W belong to a later passage by p

than RB
p and WB

p .

(The following claim, although having an identical statement to Claim 5.51.2 proven

in Case 1b, must be proven again for the assumptions made in this case. In particular,

Claim 5.51.2 uses the fact the WB
p writes true, whereas in this case WB

p is not a write

operation. The claim below uses the fact that RB
p returns true.)

Claim 5.51.3. There exists a write WB+
r by process r on DWYBypass[p][r] (at line 172)

such that (i) WB
r → WB+

r , and (ii) WB+
r 99K R.

Proof. Suppose, by way of contradiction, that the claim is false. That is, assume that

either WB
r is the last operation by r to write to DWYBypass[p][r], or for every write Ŵ

by process r on DWYBypass[p][r] if WB
r → Ŵ then R → Ŵ .

Recall, RB
p → W , R and W occur in the same passage, and W does not occur in

the same passage of p as RB
p . This implies that RB

p → R. We will now prove that for

every write Ŵ on DWYBypass[p][r] either Ŵ → RB
p , or R → Ŵ . This implies that

RB
p and R return the same value. This is a contradiction, since RB

p returns true by the
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assumption of Case 2, and R returns false. So it remains to prove that for every write

Ŵ on DWYBypass[p][r] either Ŵ → RB
p , or R → Ŵ .

Only process p and r write DWYBypass[p][r]. First, consider writes by process r.

By Claim 5.51.1, WB
r → RB

p . So, for every write Ŵ on DWYBypass[p][r] by r, either

Ŵ → RB
p (if Ŵ = WB

r , or Ŵ → WB
r ) or R → Ŵ (if WB

r → Ŵ ). Now consider writes

by process p. Recall that p does not write DWYBypass[p][r] in the passage to which RB
p

belongs, that W is the first write to DWYBypass[p][r] after RB
p , and R → W . Thus, for

every write Ŵ on DWYBypass[p][r] by p, either Ŵ → RB
p (if Ŵ occurs in a passage prior

to RB
p ) or R → Ŵ (if Ŵ = W or a later write).

Consider the write WB+
r that exists by Claim 5.51.3. By the structure of the algo-

rithm, and WB
r → WB+

r , it must be the case that WB+
r occurs in a passage by r after the

one in which r executes WB
r and RB

r . Thus R
B
r → WB+

r 99K R → W , and so RB
r → W ,

as we wanted for this subcase. (End of Case 2b, and Case 2.)

The preceding case analysis establishes that RB
r must return true, and so r will add

p to r.ignore set . This means that r will not attempt to capture p, as explained earlier

for the case when r reads true in Doorway[p][r] at line 181.

As a corollary to the preceding lemma, we state its contrapositive.

Corollary 5.52. If a process r attempts to capture a process p, then every passage by p

is such that either Ap → Cr or Ar → Cp holds.

The following lemma relates capture detection and capture attempts by showing that

when a process detects capture, there must exist some other process that previously

attempted to capture it. The lemma is an analogue to Lemma 5.24, but its proof is

more complex since it needs to take into account that capture attempts happen in a

more restricted manner than in previous algorithms, Capture entries are triplicated, and

Capture entries are reset to 0 in the doorway.
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Lemma 5.53. Suppose a process p detects capture by a process r in a passage in which

it chooses a ticket tp. Then there exists a passage by r in which the following are true:

(i) Ap → Cr, (ii) r chooses a ticket tr > tp, and (iii) Xp
r 99K Dr

p.

Proof. Process p detects capture by a process r in a passage in which it chooses a

ticket tp > 0. This implies that p reads values vr3 > tp > 0, vr2 > tp > 0, and

vr1 > tp > 0 from Capture [r][p][3], Capture[r][p][2], and Capture [r][p][1] at lines 191,

192, 193, respectively. We use Rp3 ⊆ Dr
p, Rp2 ⊆ Dr

p, and Rp1 ⊆ Dr
p to denote these

read operations. Process p only ever writes 0 to Capture[r][p][3], Capture [r][p][2], and

Capture[r][p][1] at line 176, and so some process other than p must write Capture [r][p][3],

Capture[r][p][2], and Capture[r][p][1] before Dr
p ends. The only process other than p

that writes Capture[r][p][1], Capture[r][p][2] and Capture[r][p][3] is process r, at line 196,

where r attempts to capture p by writing its ticket to these variables. Thus there exists

a passage by r in which r starts an attempt to capture p before Dr
p ends, i.e., X

p
r 99K Dr

p.

Consider the last such passage by r that starts prior to the end of Dr
p. We first show

that Ap → Cr, and then conclude by explaining why the ticket tr that r chooses in this

passage satisfies tr > tp.

Suppose, by way of contradiction, that Ap → Cr is false. Let Wr1, Wr2, and Wr3

be the write operations (part of Xp
r ) in which r writes its ticket tr to Capture [r][p][1],

Capture[r][p][2], and Capture[r][p][3], respectively, at line 196. Also, let Wp3, Wp2, and

Wp1 denote the writes by p in which p sets Capture[r][p][3] = 0, Capture [r][p][2] = 0, and

Capture[r][p][1] = 0 at line 176.

Claim 5.53.1. Cp → EP r

Proof. Suppose, by way of contradiction, that EP r 99K Cp. Thus Wr3 → EP r 99K Cp →

Wp3 → Rp3, and so Wr3 → Wp3 → Rp3. We now show that Rp3 reads the value written

by Wp3, i.e., 0, contradicting that Rp3 returns a value vr3 > tp > 0.

Since Wp3 → Rp3, we can show that Rp3 reads the value written by Wp3 by showing
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that for any write Ŵ to Capture[r][p][3] other than Wp3, either Ŵ → Wp3 or Rp3 → Ŵ .

Process p and r are the only processes that write Capture[r][p][3]. First, consider writes

by process r, which occur only once per passage at line 196 when r attempts to capture

p. We know that Wr3 → Wp3 (established in the last paragraph), and that Wr3 is part

of the last attempt by r to capture p that starts before the end of Dr
p. Thus, for every

write Ŵ by r to Capture [r][p][3], either Ŵ → Wp3 (if Ŵ is Wr3 or an earlier write) or

Dr
p → Ŵ (if Ŵ is part of an attempt by r to capture p that starts after the end of Dr

p).

Since Rp3 ⊆ Dr
p, either Ŵ → Wp3 or Rp3 → Ŵ , as desired. Next, consider writes to

Capture[r][p][3] by process p. Process p only writes Capture [r][p][3] once per passage at

line 176, and Wp3 and Rp3 are part of the same passage. Hence, for every write Ŵ by p

to Capture [r][p][3] other than Wp3, either Ŵ → Wp3 (if Ŵ occurs in an earlier passage

than Wp3 and Rp3) or Rp3 → Ŵ (if Ŵ occurs in a later passage than Wp3 and Rp3), as

desired.

Thus Rp3 reads the value written by Wp3, i.e., 0, contradicting that Rp3 returns a

value vr3 > tp > 0. (Claim 5.53.1)

Claim 5.53.2. The ticket tr that r chooses (and writes in Wr1, Wr2, and Wr3) satisfies

tr < tp.

Proof. By the supposition that Ap → Cr is false, and Corollary 5.52, Ar → Cp. This,

Claim 5.53.1, and Lemma 5.48 imply that the ticket tr that r chooses satisfies tr < tp.

(Claim 5.53.2)

Either Wr2 → Rp2 or Rp2 99K Wr2:

Case 1: Wr2 → Rp2. Either Wp2 → Wr2 or Wr2 99K Wp2:

Subcase 1a: Wp2 → Wr2. By the assumption of this case, Wp2 → Wr2 → Rp2. We

will now show that the value vr2 returned by Rp2 is the same as the value written by

Wr2, i.e., vr2 = tr. By Claim 5.53.2, the value tr written by Wr2 satisfies tr < tp, and so
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vr2 < tp. This contradicts that vr2 > tp. It remains to show that the value returned by

Rp2 is the same as the value written by Wr2.

Since Wr2 → Rp2, we can show that Rp2 reads the value written by Wr2 by showing

that for any write Ŵ to Capture[r][p][2] other than Wr2, either Ŵ → Wr2 or Rp2 → Ŵ .

Process p and r are the only processes that write Capture[r][p][2]. First, consider writes

by process p, which occur only once per passage at line 176. Since Wp2 → Wr2, and Wp2

and Rp2 are part of the same passage by p, it follows that for every write Ŵ by p to

Capture[r][p][2], either Ŵ → Wr2 (if Ŵ is Wp2 or an earlier write) or Rp2 → Ŵ (if Ŵ

occurs in a passage by p later than Rp2), as desired. Next, consider writes by process

r, which occur only once per passage at line 196 when r attempts to capture p. We

know that Wr2 is part of the last attempt by r to capture p that starts before the end

of Dr
p. Thus, for any write Ŵ by r to Capture[r][p][2] other than Wr2, either Ŵ → Wr2

(if Ŵ occurs in a passage earlier than Wr2) or D
r
p → Ŵ (if Ŵ is part of an attempt by

r to capture p that starts after the end of Dr
p). Since Rp2 ⊆ Dr

p, either Ŵ → Wr2 or

Rp2 → Ŵ , as desired.

Subcase 1b: Wr2 99K Wp2. In this case, Wr1 → Wr2 99K Wp2 → Wp1 → Rp1, and

so Wr1 → Wp1 → Rp1. We will now show that the value vr1 returned by Rp1 is the same

value written by Wp1, i.e., 0, which contradicts that Rp1 returns a value vr1 > tp > 0.

Since Wp1 → Rp1, we can show that Rp1 reads the value written by Wp1 by showing

that for any write Ŵ to Capture[r][p][1] other than Wp1, either Ŵ → Wp1 or Rp1 → Ŵ .

Process p and r are the only processes that write Capture[r][p][1]. First, consider writes

by process r, which occur only once per passage at line 196 when r attempts to capture

p. Wr1 → Wp1 and Wr1 is part of the last attempt by r to capture p that starts before

the end of Dr
p. Thus, for any write Ŵ by process r to Capture [r][p][1], either Ŵ → Wp1

(if Ŵ is Wr1 or an earlier write) or Dr
p → Ŵ (if Ŵ is part of an attempt by r to capture

p that starts after the end of Dr
p). Since Rp1 ⊆ Dr

p, either Ŵ → Wp1 or Rp1 → Ŵ , as

desired. Next, consider writes by process p. Process p only writes Capture[r][p][1] once
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per passage at line 176, and Wp1 and Rp1 are part of the same passage by p. Thus, for

any write Ŵ by p to Capture[r][p][1] other than Wp1, either Ŵ → Wp1 or Rp1 → Ŵ , as

desired.

Case 2: Rp2 99K Wr2. In this case, Wp3 → Rp3 → Rp2 99K Wr2 → Wr3, and so

Wp3 → Rp3 → Wr3.

Let W ′
r3 be r’s last write to Capture[r][p][3] before Wr3 starts. (W ′

r3 must exist,

otherwise Rp3 returns the value written by Wp3, i.e., 0, contrary to the fact that Rp3

returns a value vr3 > tp > 0.) Either W ′
r3 → Wp3 or Wp3 99K W ′

r3.

Subcase 2a: W ′
r3 → Wp3. In this case, W ′

r3 → Wp3 → Rp3 → Wr3. We will now

show that Rp3 returns that same value written by Wp3, i.e., 0, which contradicts that Rp3

returns a value vr3 > tp > 0.

Since Wp3 → Rp3, we can show that Rp3 reads the value written by Wp3 by showing

that for any write Ŵ to Capture[r][p][3] other than Wp3, either Ŵ → Wp3 or Rp3 → Ŵ .

Process p and r are the only processes that write Capture[r][p][3]. First, consider writes

by process r. W ′
r3 and Wr3 are successive writes by process r to Capture[r][p][3], and

W ′
r3 → Wp3 → Rp3 → Wr3. So for any write Ŵ by process r to Capture[r][p][3], either

Ŵ → Wp3 (if Ŵ is W ′
r3 or an earlier write) or Rp3 → Ŵ (if Ŵ is Wr3 or a later write), as

desired. Next, consider writes by process p. Process p only writes Capture[r][p][3] once

per passage at line 176, and Wp3 and Rp3 are part of the same passage by p. Thus for

any write Ŵ by p to Capture[r][p][3] other than Wp3, either Ŵ → Wp3 or Rp3 → Ŵ , as

desired.

Subcase 2b: Wp3 99K W ′
r3. In this case Ap → Wp3 99K W ′

r3 → Cr, and so Ap → Cr.

This contradicts our supposition that Ap → Cr is false.

Each part of the preceding case analysis yields a contradiction, and so Ap → Cr must

be true.

Finally, we conclude by explaining why tp < tr: Process r starts its attempt to capture

p before p detects capture, i.e., Xp
r 99K Dr

p, and so, by the structure of the algorithm,
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Cr → Xp
r 99K Dr

p → EPp. This implies that Cr → EP p, and therefore, by Lemma 5.48,

tp < tr.

5.10.3 Main Proofs

We are now ready to prove the correctness of the algorithm. We first prove that the

algorithm satisfies k-exclusion. In proving k-exclusion, we first provide a more technical

lemma, Lemma 5.54, and then use this lemma to prove k-exclusion in Lemma 5.55. After

this, we prove that FIFE holds (Lemma 5.57). The capturing mechanism added to the

FIFE algorithm in Figure 5.10 introduces the possibility that a process can enter the CS

via a new path, but it does not create any new obstacles that would prevent a process

from entering the CS. Thus the proof of starvation freedom remains identical to the

one given for the algorithm in Figure 5.7 (Lemma 5.41), modulo line number changes.

Finally, we state and prove the RMR complexity of this algorithm (Lemma 5.59).

Let Qp denote the first read operation in a passage that p executes after advancing

past the loop at line 186. After Qp finishes, we say that p is CS-qualified.

The following lemma is an analogue to Lemma 5.25, and is critical for proving k-

exclusion. Its proof turns out to be more complex than the proof of Lemma 5.25, since

it needs to take into account ticket resetting.

Lemma 5.54. Let Y be a set of processes such that |Y | ≥ k, and let p be a process that

chooses a ticket tp such that for all i ∈ Y , (tp, p) > (ti, i), where ti is the ticket chosen

by i. If ∀i ∈ Y, Ci 99K Ap then p is not CS-qualified until some process in Y starts the

exit protocol.

Proof. Assume ∀i ∈ Y, Ci 99K Ap. Suppose, by way of contradiction, that p is CS-

qualified before any process in Y starts the exit protocol, i.e., Qp finishes before any

process in Y starts the exit protocol. Further assume that the lemma is not violated
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prior to the start of Qp. (If the lemma is violated earlier, then we can modify our choice

of process p and its passage so that the preceding assumption holds.) By Lemma 5.50, p

does not remove from p.predecessor set any process in Y until some process in Y starts

the exit protocol. This and the fact that |Y | ≥ k means that p cannot advance past the

loop at line 186, and hence start Qp, until either p sets captured = true or some process

in Y starts the exit protocol. By assumption, Qp finishes before any process in Y starts

the exit protocol, and so p starts Qp after p sets captured = true, i.e., Qp starts after

p detects capture by some process r. This and Lemma 5.53 imply that there exists a

passage by r in which the following are true: (i) Ap → Cr, (ii) r chooses a ticket tr > tp,

and (iii) Xp
r 99K Dr

p.

Claim 5.54.1. For all i ∈ Y , (tr, r) > (ti, i), where ti is the ticket chosen by i.

Proof. By part (ii) of Lemma 5.53, (tr, r) > (tp, p). This and the assumption that for all

i ∈ Y , (tp, p) > (ti, i), imply that for all i ∈ Y , (tr, r) > (ti, i). (Claim 5.54.1)

Claim 5.54.2. ∀i ∈ Y, Ci 99K Ar

Proof. By the hypothesis of the lemma, part (i) of Lemma 5.53, and the structure of the

algorithm we have that for all i ∈ Y, Ci 99K Ap → Cr → Ar, and therefore Ci 99K Ar.

(Claim 5.54.2)

Claim 5.54.3. Qr → Qp.

Proof. By the structure of the algorithm and part (iii) of Lemma 5.53, Qr → Xp
r 99K

Dr
p → Qp, and so Qr → Qp. (Claim 5.54.3)

Claim 5.54.4. Process r is CS-qualified before any process in Y starts the exit protocol.

Proof. By Claim 5.54.3 and the assumption that process p is CS-qualified before any

process in Y starts the exit protocol, it follows that r is CS-qualified before any process

in Y starts the exit protocol. (Claim 5.54.4)
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By Claim 5.54.1, r chooses a ticket tr such that for all i ∈ Y , (tr, r) > (ti, i), where

ti is the ticket chosen by i. By Claim 5.54.2, ∀i ∈ Y, Ci 99K Ar, and by Claim 5.54.4, r

is CS-qualified before any process in Y starts the exit protocol. Thus when r becomes

CS-qualified (i.e., Qr finishes) the statement of the lemma is violated. By Claim 5.54.3,

Qr → Qp, and so r’s passage violates the statement of the lemma prior to the start of

Qp. This contradicts the assumption that the lemma is not violated prior to the start of

Qp.

Using the preceding lemma, it is straightforward to prove k-exclusion.

Lemma 5.55. The algorithm in Figure 5.10 satisfies k-exclusion.

Proof. Suppose, by way of contradiction, that k + 1 processes are in the CS con-

currently. Let Y be this set of processes, and let p be the process in Y with the

largest (ticket , process id) pair. All the processes in Y are in the CS concurrently,

and so ∀i ∈ Y \ {p}, Ci → EPp. From this, the assumption that p has the largest

(ticket , process id) pair, and Corollary 5.49, it follows that ∀i ∈ Y \ {p}, Ci 99K Ap.

Therefore, by Lemma 5.54, process p is not CS-qualified until some process in Y leaves

the CS, which means that p cannot be in the CS concurrently with all other processes

in Y . This contradicts the assumption that p is in the CS concurrently with all other

processes in Y .

The following lemma is used to prove that FIFE holds, and that a process has O(N)

RMR complexity in the CC model. This lemma is the analogue of Lemma 5.27, but is

significantly more complex to prove as the result of the presence of multi-reader multi-

writer variables.

Lemma 5.56. If a process p is non-faulty and finishes the doorway before a process q

starts the doorway, then after q enters the CS, p enters the CS after taking O(N) steps.

Proof. Assume that a process p is non-faulty and finishes the doorway before a process

q starts the doorway. We need to show that after q enters the CS, p enters the CS after
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taking O(N) steps. Suppose, for contradiction, that this is not the case. Let CS p be the

operation in which p executes the CS, and let CS q be the operation in which q executes

its first step in the CS. (If CS q does not exist, i.e., q never enters the CS, then the lemma

holds, so assume that CS q exists. We have no guarantee at this point that p enters

the CS, but we define the CS p operation now and are careful to make sure it exists if

necessary in our reasoning below.) Furthermore, let tp and tq be the tickets chosen by p

and q, respectively, at line 173.

Let RC
p3 and RC+

p3 be p’s first and second (in the sense of the total order given by

→) operations in the same passage by p that read Capture[q][p][3] at line 191 such that

CS q 99K RC
p3. (These operations exist by inspection of the algorithm, the assumption

that p is non-faulty, and the assumption that after q enters the CS, p does not enter the

CS after taking O(N) steps.)

Claim 5.56.1. tp < tq.

Proof. Since p finishes the doorway before q starts the doorway, Ap → Cq. If p executes

the exit protocol, then by the structure of the algorithm and CS q 99K RC
p3, we have that

Cq → CS q 99K RC
p3 → EPp. Thus Ap → Cq, and either Cq → EPp or p never executes

the exit protocol. Hence, by Lemma 5.48, tp < tq.

Let RT
q be the read by process q of Ticket [p][q] at line 195. (This read exists by the

structure of the algorithm and the fact that CS q exists. Only one such read is performed

at line 195, although the value read is used in three separate comparisons.) Let W T
p ⊆ Ap

be p’s write of tp to Ticket [p][q] at line 174. (This operation exists since p finishes the

doorway by assumption).

Claim 5.56.2. If R̂ is RT
q , or R̂ is a read by q of Ticket [p][q] at line 195 such that

RT
q → R̂ → CS p, then R̂ returns the same value as written by W T

p , i.e. tp.

Proof. Assume that R̂ is RT
q , or that R̂ is a read by q of Ticket [p][q] at line 195 such that

RT
q → R̂ → CS p. Also, let W

T+
p be p’s first write to Ticket [p][q] after W T

p , i.e., in W T+
p ,
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p writes 0 to Ticket [p][q] at line 198. (Note that W T+
p may not exist.)

The assumption that process p finishes the doorway before q starts the doorway, and

the fact that W T
p and Cq are part of the doorway, imply W T

p → Cq → RT
q , and so

W T
p → RT

q . Therefore W T
p → R̂ (since R̂ is RT

q or RT
q → R̂). Process p is the only

process that writes Ticket [p][q], and so if W T+
p does not exist, then W T

p is the uniquely

defined last write to Ticket [p][q] that finishes before R̂ starts, and we’re done. So assume

that W T+
p exists. We will now show that R̂ → W T+

p . Once we do so, since p is the only

process to write Ticket [p][q], and W T
p and W T+

p are successive writes by p, it follows that

R̂ must read the value written by W T
p , i.e., tp.

It remains to show that R̂ → W T+
p . Suppose, for contradiction, that W T+

p 99K R̂.

Since W T+
p exists and is a write at line 198 in the exit protocol, it follows that CS p exists.

Furthermore, by the structure of the algorithm and the assumption that R̂ → CS p, we

have that CS p → W T+
p 99K R̂ → CS p, which implies that CS p → CS p. This contradicts

that → is an irreflexive relation. Thus R̂ → W T+
p , as desired.

Let RC
q1, R

C
q2, R

C
q3 be q’s read of Capture[q][p][1], Capture[q][p][2], and Capture [q][p][3]

at line 195. (These reads exists by the structure of the algorithm and the fact that CS q

exists.) Let WC
p1, W

C
p2, and WC

p3 be p’s write of 0 to Capture [q][p][1], Capture [q][p][2],

and Capture[q][p][3] at line 176. (These writes exists since p finishes the doorway, by

assumption.)

Either q evaluates the condition at line 195 to be true or not.

Case 1: q evaluates the condition at line 195 to be true.

In this case, let WC
q1, WC

q2, and WC
q3, be q’s write of tq to Capture [q][p][1],

Capture[q][p][2], and Capture [q][p][3] at line 196. (These writes exist by the structure

of the algorithm, the assumption of this case, and the assumption that CS q exists).

Recall that RC
p3 and RC+

p3 are p’s first and second read of Capture[q][p][3] at line 191

such that CS q 99K RC
p3.
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Claim 5.56.3. RC+

p3 reads tq.

Proof. By CS q 99K RC
p3 and the structure of the algorithm, WC

q3 → CS q 99K RC
p3 → RC+

p3 ,

and so WC
q3 → RC+

p3 . We will now show that RC+

p3 reads the same value as written by

WC
q3, i.e., tq. To do this, we show that for any write Ŵ to Capture[q][p][3] other than

WC
q3, either Ŵ → WC

q3 or RC+

p3 → Ŵ .

Process p and q are the only processes that write Capture[q][p][3].

Claim 5.56.3.Case 1: Ŵ is a write to Capture[q][p][3] by process q.

For any write Ŵ to Capture [q][p][3] by q other than WC
q3, either Ŵ → WC

q3 or WC
q3 →

Ŵ . If Ŵ → WC
q3, then we’re done. So assume that WC

q3 → Ŵ . It suffices to show that

RC+

p3 → Ŵ for the first write Ŵ by q such that WC
q3 → Ŵ . Suppose, for contradiction

that Ŵ 99K RC+

p3 .

Let RC′

q1 be q’s read of Capture[q][p][1] at line 195 immediately before Ŵ , and let RT ′

q

be q’s read of Ticket [p][q] at line 195 immediately before Ŵ . (These operations exist

by the structure of the algorithm.) The condition at line 195 must be true for Ŵ to

exist; assume, without loss of generality, that RC′

q1 returns a value that is ≤ the value

returned by RT ′

q . (The argument that follows is similar if it is one of the other parts of

the disjunction at line 195 that evaluates to true.)

By the assumption that Ŵ 99K RC+

p3 , and the structure of the algorithm, we have

that RT ′

q → Ŵ 99K RC+

p3 → CS p, and so RT ′

q → CS p. Furthermore, RT
q → RT ′

q , and so

RT
q → RT ′

q → CS p. By Claim 5.56.2, RT ′

q returns the same value as written by W T
p , i.e.,

tp. We will now prove that RC′

q1 returns tq. Once we do so, we can make the following

argument. In the preceding paragraph we established that RC′

q1 returns a value that is ≤

the value returned by RT ′

q , and so tq ≤ tp, i.e. tp ≥ tq. This contradicts Claim 5.56.1,

which says that tp < tq. Thus, the supposition that Ŵ 99K RC+

p3 is false, and RC+

p3 → Ŵ ,

as desired. It remains to prove that RC′

q1 returns tq.

RC′

q1 occurs in later passage by q than WC
q1, and so WC

q1 → RC′

q1 . We will prove that

RC′

q1 returns the same value written as WC
q1, i.e., tq. To do this, we show that for any
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write W̄ to Capture[q][p][1] other than WC
q1, either W̄ → WC

q1 or RC′

q1 → W̄ .

Process p and q are the only processes that write Capture[q][p][1]. First we consider

writes by process p. Process p finishes the doorway before q starts the doorway, and WC
p1

is part of the doorway, so WC
p1 → WC

q1. Furthermore, by the assumption that Ŵ 99K RC+

p3

and the structure of the algorithm, RC′

q1 → Ŵ 99K RC+

p3 → CS p, which implies that

RC′

q1 → CS p. Thus WC
p1 → WC

q1 → RC′

q1 → CS p. Process p only writes Capture [p][q][1]

once per passage, and so for any write W̄ by p to Capture[q][p][1], either W̄ → WC
q1 (if

W̄ is WC
p1 or an earlier write) or RC′

q1 → CS p → W̄ (if W̄ occurs in a passage later than

WC
p1). Thus, either W̄ → WC

q1 or RC′

q1 → W̄ , as desired.

Next, consider writes W̄ by process q. Recall that Ŵ is the first write by q to

Capture[q][p][3] after WC
q3, and RC′

q1 is the read of Capture [q][p][1] that immediately pre-

cedes Ŵ . Process q writes Capture [q][p][1] and Capture[q][p][3] at most once per passage

(at line 196), after the condition at line 195 is evaluated. So, by the structure of the

algorithm, the first write by q to Capture[q][p][1] after WC
q1 finishes can start only after

RC′

q1 finishes. Therefore, for any write W̄ by q to Capture[q][p][1] other than WC
q1, either

W̄ → WC
q1 (if W̄ occurs in a passage before the one in which WC

q1 and WC
q3 occur), or

RC′

q1 → W̄ (if W̄ occurs in the same or later passage as Ŵ ), as desired.

Claim 5.56.3.Case 2: Ŵ is a write to Capture[q][p][3] by process p.

In this case we want to show that for any write Ŵ to Capture[q][p][3] by p, either

Ŵ → WC
q3 or RC+

p3 → Ŵ .

Process p only writes Capture[q][p][3] once per passage, at line 176. Therefore, any

write by p to Capture[q][p][3] after WC
p3 must occur in a later passage than the one in

which WC
p3 occurs. Since WC

p3 and RC+

p3 occur in the same passage, any write by p to

Capture[q][p][3] after WC
p3 must occur in a later passage than the one in which RC+

p3

occurs. Furthermore, process p finishes the doorway before q starts the doorway, WC
p3 is

part of the doorway, and so WC
p3 → WC

q3. Thus, for any write Ŵ to Capture[q][p][3] by p,

either Ŵ → WC
q3 (if Ŵ is WC

p3 or an earlier write) or RC+

p3 → Ŵ (if Ŵ occurs in a passage
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later than the one in which WC
p3 and RC+

p3 occur), as desired.

By Claim 5.56.3, RC+

p3 reads tq, and by Claim 5.56.1, tp < tq. Thus p evaluates the

condition at line 191 to be true. An argument similar to the one in Claim 5.56.3 can be

used to establish that the value returned by p’s next read of Capture[q][p][2] at line 192

is tq. Using this, we can establish that the condition p evaluates at line 192 is true.

Finally, an analogous argument can be made that p subsequently evaluates the condition

at line 193 to be true. After this, p sets captured to be true, and, by inspection of the

algorithm, executes O(N) more steps prior to entering the CS.

We have established the following: After q enters the CS, p executes O(N) steps

before starting RC+

p3 at line 191. This follows by the structure of the algorithm and

because RC
p3 and RC+

p3 are p’s first and second reads of Capture [q][p][3] at line 191 such

that CS q 99K RC
p3. After finishing RC+

p3 , p executes O(N) more steps prior to entering

the CS. Therefore, after q enters the CS, p executes O(N) steps in the trying protocol

before entering the CS. This contradicts that after q enters the CS, p does not enter the

CS after taking O(N) steps.

Case 2: q evaluates the condition at line 195 to be false.

By Claim 5.56.2, RT
q returns tp. By assumption of this case, q evaluates the condition

at line 195 to be false, and so RC
q3, R

C
q2, and RC

q1 each return a value strictly greater than

tp.

Recall that RC
p3 and RC+

p3 are p’s first and second read of Capture[q][p][3] at line 191

such that CS q 99K RC
p3.

Claim 5.56.4. RC+

p3 reads the same value as RC
q3.

Proof. By the structure of the algorithm and the assumption that CS q 99K RC
p3, R

C
q3 →

CS q 99K RC
p3 → RC+

p3 , and so RC
q3 → RC+

p3 . We now prove that for every write Ŵ to

Capture[q][p][3], either Ŵ → RC
q3, or R

C+

p3 → Ŵ . This establishes that RC
q3 and RC+

p3 read

the same value.
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Process p and q are the only processes that write Capture[q][p][3].

Claim 5.56.4.Case 1: Ŵ is a write to Capture[q][p][3] by process q.

By assumption of this case, q does not write Capture[q][p][3] in the same passage as

RC
q3 occurs. Thus, for any write Ŵ to Capture [q][p][3] by q, either Ŵ → RC

q3 (if Ŵ occurs

in a passage earlier than the one in which RC
q3 occurs) or RC

q3 → Ŵ (if Ŵ occurs in a

passage later than the one in which RC
q3 occurs). If Ŵ → RC

q3, then we are done. So

assume that RC
q3 → Ŵ . It suffices to show that RC+

p3 → Ŵ for the first write Ŵ to

Capture[q][p][3] by q such that RC
q3 → Ŵ . Suppose, for contradiction that Ŵ 99K RC+

p3 .

Let RC′

q1 be q’s read of Capture[q][p][1] at line 195 immediately before Ŵ , and let RT ′

q

be q’s read of Ticket [p][q] at line 195 immediately before Ŵ . (These operations exist

by the structure of the algorithm.) The condition at line 195 must be true for Ŵ to

exist; assume, without loss of generality, that RC′

q1 returns a value that is ≤ the value

returned by RT ′

q . (The argument that follows is similar if it is one of the other parts of

the disjunction at line 195 that evaluates to true.)

By the assumption that Ŵ 99K RC+

p3 , and the structure of the algorithm, we have

that RT ′

q → Ŵ 99K RC+

p3 → CS p, and so RT ′

q → CS p. This, and the fact that RT ′

q occurs

in a later passage than RT
q , imply RT

q → RT ′

q → CS p. By Claim 5.56.2, RT ′

q returns

the same value as written by W T
p , i.e., tp. In the preceding paragraph we established

that RC′

q1 returns a value v that is ≤ the value returned by RT ′

q , and so v ≤ tp. We will

now prove that RC′

q1 returns the same value v as RC
q1. Once we do so, we can make the

following argument. Recall that by assumption of this case, the value returned by RC
q1

is strictly greater than tp. Therefore v > tp, which contradicts that v ≤ tp. Thus, the

supposition that Ŵ 99K RC+

p3 is false, and RC+

p3 → Ŵ , as desired. It remains to prove

that RC′

q1 returns the same value as RC
q1.

RC′

q1 occurs in a passage after RC
q1, so RC

q1 → RC′

q1 . To show that RC′

q1 returns the same

value as RC
q1, we show that for any write W̄ to Capture[q][p][1], W̄ → RC

q1 or RC′

q1 → W̄ .

Process p and q are the only processes that write Capture[q][p][1].
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First we consider writes W̄ by process p. WC
p1 is part of p’s doorway, and p finishes

the doorway before q starts the doorway, so WC
p1 → RC

q1. Furthermore, by assumption,

Ŵ 99K RC+

p3 , and so RC′

q1 → Ŵ 99K RC+

p3 → CS p, which implies that RC′

q1 → CS p. Thus

WC
p1 → RC

q1 → RC′

q1 → CS p. Process p only writes Capture[p][q][1] once per passage, and

so for any write W̄ by p to Capture [q][p][1], either W̄ → RC
q1 (if W̄ is WC

p1 or an earlier

write) or RC′

q1 → CS p → W̄ (if W̄ occurs in a passage later than the one in which WC
p1

and CS p occur). Thus, either W̄ → RC
q1 or RC′

q1 → W̄ , as desired.

Next, consider writes W̄ by process q. Recall that Ŵ is the first write by q to

Capture[q][p][3] after RC
q3, and RC′

q1 is the read of Capture [q][p][1] that immediately pre-

cedes Ŵ . Process q writes Capture[q][p][1] and Capture[q][p][3] at most once per pas-

sage (at line 196), after the condition at line 195 is evaluated, and no writes by q to

Capture[q][p][3] or Capture[q][p][1] occur in the same passage that RC
q1 and RC

q3 occur.

Therefore, for any write W̄ by q to Capture [q][p][1], either W̄ → RC
q1 (if W̄ occurs in a

passage before the one in which RC
q1 and RC

q3 occur), or RC′

q1 → W̄ (if W̄ occurs in the

same or later passage as Ŵ ), as desired.

Claim 5.56.4.Case 2: Ŵ is a write to Capture[q][p][3] by process p.

In this case we want to show that for any write Ŵ to Capture[q][p][3] by p, either

Ŵ → RC
q3 or RC+

p3 → Ŵ .

Process p only writes Capture[q][p][3] once per passage, at line 176. Therefore, any

write by p to Capture[q][p][3] after WC
p3 must occur in a later passage than the one in

which WC
p3 occurs. Since WC

p3 and RC+

p3 occur in the same passage, any write by p to

Capture[q][p][3] after WC
p3 must occur in a later passage than the one in which RC+

p3

occurs. Furthermore, process p finishes the doorway before q starts the doorway, WC
p3 is

part of the doorway, and so WC
p3 → RC

q3. Thus, for any write Ŵ to Capture [q][p][3] by p,

either Ŵ → RC
q3 (if Ŵ is WC

p3 or an earlier write) or RC+

p3 → Ŵ (if Ŵ occurs in a passage

later than the one in which WC
p3 and RC+

p3 occur), as desired.

By Claim 5.56.4, RC+

p3 returns the same value as RC
q3. Immediately before Claim 5.56.4,
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we established that RC
q3 returns a value strictly greater than tp. Thus p evaluates the

condition at line 191 to be true. An argument similar to the one in Claim 5.56.4 can be

used to establish that the value returned by p’s next read of Capture[q][p][2] at line 192

is the same as the value returned by RC
q2. Using this, we can establish that the condition

p evaluates at line 192 is true. Finally, an analogous argument can be made that p

subsequently evaluates the condition at line 193 to be true. After this, p sets captured to

be true, and, by inspection of the algorithm, executes O(N) more steps prior to entering

the CS.

We have established the following: After q enters the CS, p executes O(N) steps

before starting RC+

p3 at line 191. This follows by the structure of the algorithm and

because RC
p3 and RC+

p3 are p’s first and second reads of Capture [q][p][3] at line 191 such

that CS q 99K RC
p3. After finishing RC+

p3 , p executes O(N) more steps prior to entering

the CS. Therefore, after q enters the CS, p executes O(N) steps in the trying protocol

before entering the CS. This contradicts that after q enters the CS, p does not enter the

CS after taking O(N) steps.

Lemma 5.57. The algorithm in Figure 5.10 satisfies FIFE.

Proof. Follows immediately from Lemma 5.56.

Lemma 5.58. In the CC model, a process p makes O(N) RMRs in the loop at line 186.

Proof. Either process p makes at most 60N − 1 RMRs in the loop at line 186, or at least

60N RMRs. In the former case, the lemma is clearly true. In the latter case, let R≤60

denote the operation in which p makes its first 60N RMRs. There are at most 6N shared

variables (Bypass[i][p], Doorway[i][p], Ticket [i][p], Capture[i][p][1], Capture[i][p][2], and

Capture[i][p][3] for each i ∈ {1..N}) that p reads in the loop, and so p makes at least ten

RMRs to one of these variables before R≤60 finishes. We consider the possible variables

in six separate cases:
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Case 1: Process p makes at least ten RMRs to Bypass[q][p] for some process q.

Let R≤10 ⊆ R≤60 be the operation in which p makes these RMRs, let Ri
p ⊆ R≤10 for

i ∈ {1..10} be the operation in which p makes its i’th RMR in R≤10. Recall that in the

CC model a process makes an RMR when it reads a variable for the first time, writes a

variable, and whenever a process reads a variable for the first time after another process

has written that variable. Process p only writes Bypass[q][p] at line 183, outside of the

loop at line 186. So, during R≤10 (i.e., after R≤10 starts and before R10 finishes), q must

update Bypass[q][p] at least nine times: p’s first RMR in R≤10 may happen because p

does not have copy of Bypass [q][p] in its cache, but each of p’s nine subsequent RMRs to

Bypass[q][p] in R≤10 can only occur after q writes Bypass [q][p], invalidating the copy of

Bypass[q][p] in p’s cache. More precisely, there must exist distinct write operations W j
q

by q to Bypass[q][p], for j ∈ {1..9}, such that Rj
p 99K W j

q → Rj+1
p . This and the fact that

process q writes Bypass[q][p] at most once per passage (line 200) imply that there is a

passage by q that occurs during R≤10. More precisely, there is a passage Pq by process q

such that R1
p → Pq and Pq → R10

p . Let the operation DWY q denote q’s execution of its

doorway in Pq, and let DWY p denote p’s execution of its doorway. DWY p → R1
p → Pq,

and so DWY p → R1
p → DWY q. This implies that p finishes its doorway before q starts

its doorway. By this and Lemma 5.56, after q enters the CS, p enters the CS after taking

O(N) steps. Process q’s passage Pq finishes before R10
p starts (since Pq → R10

p ), and so

q enters the CS before p finishes R≤10. Therefore, after R≤10 finishes, p enters the CS

after taking O(N) steps. This implies that p makes O(N) additional RMRs in the loop

at line 186 after R≤10 finishes. (End of Case 1)

The argument for the remaining cases is similar: it involves showing that there exists

a passage by q that occurs entirely during R≤10, and then applying Lemma 5.56 to show

that p makes at most O(N) additional RMRs in the loop at line 186 after R≤10 finishes.

We summarize the cases below, but the details are omitted.

Case 2: Process p makes at least ten RMRs to Doorway[q][p] for some process q.
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The argument for this case is similar to Case 1, except that q writes Doorway[q][p] twice

per passage (at line 171 and line 182).

Case 3: Process p makes at least ten RMRs to Ticket [q][p] for some process q. The

argument for this case is similar to Case 1, except that q writes Ticket [q][p] twice in a

passage (at line 174 and line 198).

Case 4-6: Process p makes at least ten RMRs to Capture[q][p][∗] for some process

q. The argument for this case is similar to Case 1, except that q writes Capture [q][p][∗]

at most once per passage (at line 196).

Lemma 5.59. The algorithm in Figure 5.10 has RMR complexity Θ(N) in both the DSM

and CC models.

Proof. We first prove the lemma for the CC model. At each line in the doorway and the

exit protocol, a process p makes Θ(N) RMRs, and so p makes a total of Θ(N) RMRs

in the doorway and exit protocol. In the waiting room, outside of the loop at line 186,

p makes Θ(N) RMRs. By Lemma 5.58, p makes O(N) RMRs in the loop at line 186.

Therefore, the total number of RMRs p makes in a passage is Θ(N).

The result also follows for the DSM model by a similar argument. The only difference

in the DSM model is that p makes no RMRs while in the loop at line 186, as each shared

variable referenced in that loop is local to p.

Theorem 5.60. The algorithm in Figure 5.10 satisfies k-exclusion, starvation freedom,

and FIFE. Moreover, it has RMR complexity Θ(N) in both the DSM and CC models.

Proof. The result follows from Lemmas 5.55, 5.41 (modulo line number changes), 5.57,

and 5.59.

5.11 Summary of Techniques

This chapter introduced a number of different k-exclusion algorithms. All of them satisfy

k-exclusion, starvation freedom, bounded exit, and k-FCFS. Additionally, all of them
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have O(N) RMR complexity in both the CC and DSM models, except for the algorithm

presented in Section 5.5, which has O(N) RMR complexity only in the CC model. The

algorithms differ in the set of features identified in Section 5.2: ticket resetting, strength

of read and write operations required (atomic vs. non-atomic), and FIFE. A number

of different key techniques are used by the algorithms to satisfy these features. We

summarize these techniques here.

The simplest algorithm, which does not reset tickets, requires atomic reads and writes,

and does not satisfy FIFE, is presented in Section 5.4. To satisfy FIFE, the algorithm

is augmented in Section 5.6 with a capturing mechanism: processes, prior to entering

the CS, capture other processes with smaller tickets that are still in the waiting room,

thereby granting them entry into the CS. To modify this algorithm to use only non-atomic

reads and writes, we used in Section 5.7 the idea of shared variable duplication: duplicate

certain shared variables, and then read the copies of those variables in the reverse order

of which they are written.

The first ticket resetting algorithm that we introduced was in Section 5.8. The key

technique in this algorithm is the detection of waiting-room bypass : if a process p is in the

waiting room, and another process q executes a full passage, thereby “bypassing” p in the

waiting room, then p detects this and removes q from p.predecessor set . This algorithm

works with non-atomic reads and writes, even though it does not use the shared variable

duplication technique as in Section 5.7. In Section 5.9, the k-exclusion algorithm we

present uses atomic reads and writes, resets tickets, and additionally satisfies FIFE. To

satisfy FIFE, the algorithm uses a capturing mechanism, similar to the one used earlier

in Section 5.6. However, simply using a capturing mechanism is not sufficient to arrive

at a correct k-exclusion algorithm. The algorithm uses another technique, in conjunction

with capturing, that we call detection of doorway bypass : if a process p is in the doorway,

and a process q executes through the doorway, thereby “bypassing” p in the doorway,

then p should be able to detect this. This allows p to apply the capturing mechanism
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only in situations that will not lead to k-exclusion being violated.

Figure 5.11: Summary of k-exclusion algorithms, features, and techniques.

To arrive at the algorithm in Section 5.10, which resets tickets, requires only non-

atomic reads and writes, and satisfies FIFE, we modify the algorithm from Section 5.9

by using shared variable triplication: triplicate certain shared variables, and then read

the copies of those variables in the reverse order of which they are written.

The tree diagram in Figure 5.11 summarizes the relationship between the different

algorithms, the features that they possess, and the key techniques that they use.
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Conclusion

We have presented in this thesis a number of novel local-spin algorithms for variants of

the mutual exclusion problem, using only read and write operations on shared variables

as the synchronization primitives. In particular, we have presented an efficient FCFS

mutual exclusion algorithm that uses only atomic reads and writes and has O(logN)

RMR complexity in both the DSM and CC models. To our knowledge, this is the first

such algorithm presented in the literature. Prior FCFS mutual exclusion algorithms ei-

ther have super-logarithmic RMR complexity, or use synchronization primitives stronger

than atomic reads and writes. This algorithm is also adaptive to point contention. More

precisely, the number of RMRs a process makes per passage is Θ(min(c, logN)), where

c is the point contention. We can use Lamport’s register constructions [33, 34] to trans-

form this algorithm into one that uses only non-atomic reads and writes, however this

transformation is extremely inefficient and the result would not have O(logN) RMR

complexity. It remains an open problem as to whether FCFS mutual exclusion can be

done using non-atomic reads and writes and have O(logN) RMR complexity.

We have also presented a transformation that converts abortable mutual exclusion to

FCFS abortable mutual exclusion. This transformation uses only reads and writes and

is local-spin. In conjunction with work by Danek and Lee [15, 35] and work by Danek

170



Chapter 6. Conclusion 171

and Hadzilacos [14], this transformation yields the first known FCFS abortable mutual

exclusion algorithm and the first known group mutual exclusion algorithm that are local-

spin and use only atomic reads and writes. Both algorithms have O(N) RMR complexity

in the DSM and CC models. It is not known whether FCFS abortable mutual exclusion

can be done with O(logN) RMR complexity. There is no obvious way to adapt the

O(logN) RMR complexity FCFS mutual exclusion algorithm from this thesis to make it

abortable, as it uses a priority queue that is protected by an auxiliary lock. Any abort

protocol that updates the priority queue would have to acquire the lock first, which means

that bounded abort would not be satisfied.

Finally, we have presented the first known k-exclusion algorithms that are local-spin

in the CC and DSM models and that use only atomic reads and writes. The only pre-

viously known local-spin k-exclusion algorithms are by Anderson and Moir [2]. Their

algorithms have RMR complexity Θ(k log (N/k)) and Θ(c), where c is point contention,

i.e., the maximum number of processes simultaneously outside of the NCS during a pas-

sage. Unlike our k-exclusion algorithms, Anderson and Moir’s algorithms use strong

synchronization primitives such as Fetch&Add, Test&Set, and Compare&Swap

in addition to atomic reads and writes. Interestingly, the worst-case RMR complexity

of their algorithms matches asymptotically the worst-case RMR complexity of the algo-

rithms in this thesis, for any k that is a constant fraction of N (e.g., for k = N/2). This

is significant because it leads to a state of affairs in which the only known local-spin k-

exclusion algorithms that use strong synchronization primitives have the same worst-case

RMR complexity (within constant factors) as the only known local-spin k-exclusion algo-

rithms that use only atomic reads and writes. This is in contrast to what is known about

the case in which k = 1 (i.e., ordinary mutual exclusion): Using stronger synchronization

primitives like Fetch&Add there exist O(1) RMR complexity mutual exclusion algo-

rithms [4] (and references cited therein), whereas the class of mutual exclusion algorithms

that use only atomic reads and writes (and comparison primitives) have Ω(logN) RMR
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complexity [5].

In light of the preceding paragraph, our results in Chapter 5 open some interesting

questions. For a given set of synchronization primitives, what exactly is the RMR com-

plexity of k-exclusion as k varies? Is the RMR complexity of k-exclusion (asymptotically)

the same as that of mutual exclusion for all values of k, or are there values of k for which

k-exclusion is (asymptotically) harder in terms of RMRs than mutual exclusion? This

question can be asked with respect to algorithms that use only reads and writes, as well

as algorithms that also use stronger synchronization primitives such as Fetch&Add.

In the case of mutual exclusion it is known that the choice of primitives affects the

RMR complexity. As pointed out above, however, this not (yet) known in the case of

k-exclusion. We conjecture that there is a super-logarithmic lower bound for k-exclusion

that holds irrespective of synchronization primitives for values of k that are a constant

fraction of N (e.g., for k = N/2).

We also presented several variants of our k-exclusion algorithms that work even if read

and write operations are not atomic. These algorithms are structured with the same

elegance of Lamport’s Bakery algorithm. Like the Bakery algorithm, however, tickets

can grow without bound in our algorithms. There exist variations of Lamport’s Bakery

algorithm for mutual exclusion [27, 42] in which tickets are bounded and each shared

variable requires only Θ(logN) bits. The techniques used in these papers, unfortunately,

are not easily adapted to our algorithms, since they rely on the fact that at most one

process can execute through the CS at a time. Afek et al. [1] use a more generic scheme,

known as a bounded concurrent timestamp system (BCTS) [17], to bound tickets in their

Bakery-like (non-local-spin) k-exclusion algorithm. However, the BCTS implementation

in [17] requires large shared variables, each with size Ω(N) bits. In fact, all bounded

timestamp systems require Ω(N) bits per timestamp [24], and thus tend to be impractical.

Furthermore, a process executing the algorithm of Afek et al. can make an unbounded

number of calls to the BCTS while waiting to enter the CS, and it is not clear how these
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calls can be made so as to incur only a bounded number of RMRs. Finding a variant of

our algorithms that are local-spin and use bounded tickets, preferably requiring O(logN)

bits per timestamp, remains an open problem.
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