
The k-Bakery: Local-spin k-Exclusion
Using Non-atomic Reads and Writes

Robert Danek
∗

Department of Computer Science
University of Toronto

Toronto, Canada
rdanek@cs.toronto.edu

ABSTRACT
Mutual exclusion is used to coordinate access to shared re-
sources by concurrent processes. k-Exclusion is a variant
of mutual exclusion in which up to k processes can simul-
taneously access the shared resource. We present the first
known shared-memory k-exclusion algorithms that use only
atomic reads and writes, have bounded remote memory ref-
erence (RMR) complexity, and tolerate crash failures. Our
algorithms have RMR complexity O(N) in both the cache-
coherent and distributed shared-memory models, where N
is the number of processes in the system. Additionally, we
present a k-exclusion algorithm that satisfies the First-In-
First-Enabled (FIFE) fairness property. FIFE requires that
processes become “enabled” to enter the CS roughly in the
order that they request access to the shared resource. Fi-
nally, we present a modification to the FIFE k-exclusion al-
gorithm that works with non-atomic reads and writes. The
high-level structure of all our algorithms is inspired by Lam-
port’s famous Bakery algorithm.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms
Algorithms, Performance, Theory

Keywords
Mutual exclusion, k-exclusion, safe registers, remote mem-
ory references, shared memory

∗Supported in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

1. INTRODUCTION
Mutual exclusion [9] is used to resolve conflicts between

multiple processes trying to access a shared resource in a
multiprocessor system. A mutual exclusion algorithm con-
sists of two methods, the trying and exit protocols, that pro-
tect the resource (also called the critical section (CS)) so
that at most one process is allowed to use the resource at a
given time. A process executes the trying protocol whenever
it wants to access the CS, and does not enter the CS until
the trying protocol terminates. After a process leaves the
CS, it executes the exit protocol. If a process is not in the
trying protocol, exit protocol, or CS, it is said to be in the
non-critical section (NCS).

To coordinate access to the CS, processes communicate
with each other by reading and writing variables in shared
memory. In particular, the algorithms that we consider in
this paper use atomic and non-atomic reads and writes.
Each time a process reads or writes a single shared vari-
able, we say that the process has taken a step. Intuitively,
an atomic read or write takes effect “instantaneously” in one
indivisible step, whereas non-atomic reads and writes can in-
terfere with each other in the following way: if a non-atomic
read and write access the same variable concurrently, then
the read returns an arbitrary value. We do not worry about
the case in which multiple processes concurrently write the
same variable, as this situation does not arise in our al-
gorithms. More precisely, atomic (non-atomic) reads and
writes of variables in this paper behave the same as reads
and writes of multireader single-writer atomic (safe) regis-
ters as defined by Lamport [19].

k-Exclusion [12] is a generalization of mutual exclusion
that allows up to k processes to be in the critical section
concurrently, and can tolerate up to k−1 process crashes in
a manner described more precisely in the starvation freedom
property below. We say that a process crashes if it stops
taking steps while outside the NCS. If a process crashes we
say that it is faulty ; otherwise we say that it is non-faulty.
Note that, for our purposes, a process that stops taking steps
in the NCS, i.e., a process that never attempts to enter the
CS after some point, is not considered faulty.

The correctness properties that a k-exclusion algorithm
must satisfy are summarized as follows:

k-Exclusion: At most k processes are in the critical section
(CS) at the same time.

Starvation Freedom: If a non-faulty process p is in the
trying protocol and at most k−1 other processes crash,
then p eventually enters the CS.

Bounded Exit: If a process p enters the exit protocol, then
p returns to the NCS in a bounded number of its own
steps.

We assume that the CS is finite to prevent situations in
which processes can take an infinite number of steps inside
the CS. That is, a process that enters the CS and does not
crash will eventually enter the exit protocol.

In ordinary mutual exclusion (i.e., k = 1), it is sometimes
desirable for processes to execute through the CS roughly in
the order in which they leave the NCS. This order is more
“fair” than if processes were allowed to execute through the
CS in an arbitrary order, as it gives priority to processes that
try accessing the CS earlier than others. To make this idea of
fair ordering more precise, we split the trying protocol into
two parts: the first part is a bounded piece of code called
the doorway, and the second part is known as the waiting
room. Fair ordering is captured by the First-Come-First-
Served (FCFS) property [17]:

FCFS: If a process p finishes the doorway before a process
q starts the doorway, then q does not enter the CS
before p enters the CS.

In the context of k-exclusion, when k > 1, requiring that
an algorithm satisfies FCFS does not make sense, since it
conflicts with the starvation freedom property: If a process
p completes the doorway and crashes before a non-faulty
process q enters the doorway, then a k-exclusion algorithm
that satisfies FCFS must prevent q from ever entering the
CS, thereby violating starvation freedom. However, we can
weaken the FCFS property so that it does not conflict with
starvation freedom and still provides some modicum of fair-
ness. We define a new property in this paper called k-FCFS :

k-FCFS: For any set of processes Y such that |Y | = k, if
all processes in Y finish the doorway before a process
p starts the doorway, then p does not enter the CS
before at least one process in Y enters the CS.

A nice feature of k-FCFS is that it makes sense for all
k ≥ 1. In particular, for k = 1, it is simply the FCFS
property for ordinary mutual exclusion.

Another fairness property for the k-exclusion problem,
known as First-In-First-Enabled (FIFE), was originally de-
fined by Fischer et al. [12]. Intuitively, FIFE requires that
processes become enabled to enter the CS in the order in
which they execute through the doorway. A process p is en-
abled to enter the CS if it can enter the CS in a bounded
number of its own steps. More precisely:

FIFE: If a process p finishes the doorway before a process q
starts the doorway, and q enters the CS before p, then
p can enter the CS in a bounded number of its own
steps.

FIFE is a stronger property than k-FCFS in that any
k-exclusion algorithm that satisfies FIFE also satisfies k-
FCFS. To see why this is case, suppose, by way of contra-
diction, that there is a k-exclusion algorithm that satisfies
FIFE but not k-FCFS. There exists an execution of this al-
gorithm in which some set of processes Y , where |Y | = k,
all finish the doorway before a process p starts the doorway,
and p enters the CS before any process in Y enters the CS.

By FIFE, each process in Y is able to enter the CS in a
bounded number of its own steps. Thus, the execution can
proceed in such a way that process p remains in the CS until
all processes in Y enter the CS. We now have a situation in
which k + 1 processes are in the CS, contradicting that the
algorithm satisfies k-exclusion.

The time complexity of an algorithm is typically measured
by counting the number of reads or writes that can occur
during its execution. This measure is useless for k-exclusion
(and ordinary mutual exclusion) algorithms, however, for
the following reason. When a process executes the trying
protocol of a k-exclusion algorithm, it may be forced to wait
to enter the CS so as not to violate the k-exclusion property.
During this waiting period, a process can read or write a
single variable an unbounded number of times. Even if no
processes are already in the CS, Alur and Taubenfeld [2]
proved that for any mutual exclusion algorithm that uses
only reads and writes and involves two or more processes,
even the first process into the CS may need to make an
unbounded number of accesses to shared variables. This
leads to an unbounded time complexity measure.

A more practical measure of time complexity that avoids
the preceding problem is obtained by counting the number
of remote memory references (RMRs) that a process makes
in a passage. A passage is the time between when a pro-
cess leaves the NCS to when it next returns to it, and an
RMR occurs whenever a process accesses a variable that re-
quires it to traverse the processor-to-memory interconnect,
which can be a bottleneck. As a result of having to traverse
the interconnect, RMRs tend to be an order of magnitude
slower than local memory references, and the performance of
many shared-memory algorithms degrades as the number of
RMRs they make increases [20]. This observation suggests
that to maximize the performance of such algorithms, it is
important to minimize the number of RMRs. The worst-
case number of RMRs that a process can make in a passage
is referred to as the algorithm’s RMR complexity, and an
algorithm having bounded RMR complexity is referred to
as a local-spin algorithm.

To make the idea of a remote versus local memory refer-
ence more precise, we consider two models for shared mem-
ory architectures: the Distributed Shared Memory (DSM)
model, and Cache-Coherent (CC) model [3]. In the DSM
model, each process has a memory module that it can ac-
cess locally and all other processes can access remotely. Each
shared variable is assigned to a processor’s memory module
prior to the start of execution, and remains there for the
duration of the execution.

There are a number of different flavours of CC models.
We describe the write-through/write-invalidate model here,
although our results apply equally to the write-back/write-
invalidate model, which is similar and is also commonly
used in practice. In the write-through/write-invalidate CC
model, each process has a local cache, and there is a global
memory store that all processes can access remotely. To read
a variable, a process first tries reading it locally in its cache.
If the variable is not there, the process then accesses the
variable remotely in the global store and caches it locally. A
cached copy of the variable will remain in a process’s cache
until the copy is invalidated. To write a variable, a process
writes it remotely to the global memory store and invalidates
any copies cached by other processes.

Our main contribution in this paper is the first known

Reference RMR Complexity Instructions Used Starvation
Free

Fischer et al. [12] ∞ Atomic Actions1 Yes
Fischer et al. [13] ∞ Atomic Actions Yes
Dolev et al. [10] ∞ Non-Atomic Read and Write Yes
Afek et al. [1] ∞ Atomic Read and Write Yes

Peterson (CC) [21] Θ(N3 − Nk2) Atomic Read and Write No
Peterson (DSM) [21] ∞ Atomic Read and Write No
Burns and Peterson [6] ∞ Atomic Read and Write Yes
Gottlieb et al. [14] ∞ Fetch&Add No
Anderson and Moir (CC/DSM) [4] Θ(k log (N/k)) Fetch&Add, Test&Set,

Compare&Swap

Yes

Anderson and Moir (CC/DSM) [4] Θ(c) Fetch&Add, Test&Set,
Compare&Swap

Yes

Danek and Lee (CC/DSM) [8] Θ(k log N) Atomic Read and Write No
CC/DSM algorithm (Figure 2 - unshaded portion) Θ(N) Atomic Read and Write Yes
FIFE algorithm (Figure 2) Θ(N) Atomic Read and Write Yes
Non-Atomic FIFE algorithm (Figure 3) Θ(N) Non-Atomic Read and Write Yes

Table 1: Known k-exclusion algorithms.

local-spin k-exclusion algorithms that use only atomic reads
and writes. Our algorithms have O(N) RMR complexity in
both the CC and DSM models, where N is the number of
processes in the system, and satisfy the k-FCFS property.
One variant of the algorithms additionally satisfies the FIFE
property. Also, we present a version of the FIFE k-exclusion
algorithm that works with non-atomic reads and writes. The
high-level structure of all our algorithms is inspired by Lam-
port’s famous Bakery algorithm.

The remainder of the paper is organized as follows. In the
next section we present a comparison of our results to known
k-exclusion algorithms and discuss the importance of our re-
sults in the context of what is currently known about mutual
exclusion and k-exclusion. We then provide a brief overview
of Lamport’s Bakery algorithm, after which we present our
results. The first algorithm is a k-exclusion algorithm sat-
isfying k-FCFS. We then modify the algorithm so that it
satisfies FIFE, and finally present a version of the algorithm
that uses only non-atomic reads and writes. We provide a
full proof of correctness for the first algorithm, but omit the
proofs for the other algorithms due to space limitations.

2. KNOWN RESULTS AND OPEN
PROBLEMS

In Table 1 we present a summary of known k-exclusion al-
gorithms and their properties2. Several algorithms [21, 14, 8]
do not satisfy starvation freedom as defined above. Rather,
they satisfy weaker progress properties that depend on pro-
cesses not crashing. Excluding these exceptions, our discus-
sion of k-exclusion algorithms in this paper is restricted to
algorithms satisfying all of k-exclusion, starvation freedom,
and bounded exit.

The algorithms in this paper have a very similar structure

1Atomic actions refer to parts of the algorithm that are as-
sumed to execute atomically. Atomic actions are more com-
plex than Fetch&Add or Compare&Swap operations, and
consist of several reads, writes, and comparisons executed
together.
2This table is adapted from one by Anderson and Moir [4].

to the k-exclusion algorithm by Afek et al. [1], which is
also inspired by Lamport’s Bakery algorithm. The main
differences between the present work and the algorithm in [1]
are that our algorithms are local-spin, and we also present
a k-exclusion algorithm that works with non-atomic reads
and writes.

The only previously known local-spin k-exclusion al-
gorithms satisfying starvation freedom are by Anderson
and Moir [4]. Their algorithms have RMR complexity
Θ(k log (N/k)) and Θ(c), where c is point contention, i.e., the
maximum number of processes simultaneously outside of the
NCS during a passage. Unlike the present work, Anderson
and Moir’s algorithms use strong synchronization primitives
such as Fetch&Add, Test&Set, and Compare&Swap

in addition to atomic reads and writes. Interestingly, the
worst-case RMR complexity of their algorithms matches
asymptotically the worst-case RMR complexity of the al-
gorithms in this paper, for any k that is a constant fraction
of N (e.g., for k = N/2). This is significant because it leads
to a state of affairs in which the only known local-spin k-
exclusion algorithms that use strong synchronization prim-
itives have the same worst-case RMR complexity (within
constant factors) as the only known local-spin k-exclusion
algorithms that use only atomic reads and writes. This is in
contrast to what is known about the case in which k = 1 (i.e.,
ordinary mutual exclusion): Using stronger synchronization
primitives like Fetch&Add there exist O(1) RMR com-
plexity mutual exclusion algorithms [3], whereas the class
of mutual exclusion algorithms that use only atomic reads
and writes (and comparison primitives) have Ω(log N) RMR
complexity [5].

This paper solves the open problem of whether there ex-
ists local-spin k-exclusion algorithms that use only reads and
writes. In light of the preceding paragraph, our results also
open some interesting questions. For a given set of syn-
chronization primitives, what exactly is the RMR complex-
ity of k-exclusion as k varies? Is the RMR complexity of
k-exclusion (asymptotically) the same as that of mutual ex-
clusion for all values of k, or are there values of k for which k-
exclusion is (asymptotically) harder in terms of RMRs than

shared variables:
Doorway : array[1..N] of boolean init all false

Ticket : array[1..N] of N init all 0

loop1

NCS2

Doorway [p] := true3

Ticket [p] := 1 + max(Ticket [1], Ticket [2], ..., Ticket [N])4

Doorway [p] := false5

for i := 1 to N do6

await Doorway [i] = false7

await Ticket [i] = 0 ∨ (Ticket [i], i) ≥ (Ticket [p], p)8

CS9

Ticket [p] := 010

end loop11

Figure 1: Lamport’s Bakery algorithm for ordinary mutual exclusion, for process p ∈ {1, ..., N}

mutual exclusion? This question can be asked with respect
to algorithms that use only reads and writes, as well as al-
gorithms that also use stronger synchronization primitives
such as Fetch&Add. In the case of mutual exclusion it is
known that the choice of primitives affects the RMR com-
plexity. As pointed out above, however, this not (yet) known
in the case of k-exclusion.

3. LAMPORT’S BAKERY ALGORITHM
Lamport’s Bakery algorithm [17] is a non-local-spin FCFS

mutual exclusion algorithm that is correct even when reads
and writes are non-atomic. It is given in Figure 1. The name
of the algorithm arises from the fact that processes behave
like people waiting in line at a bakery. Each process obtains
a ticket and then waits for its turn to be served by the CS.

The algorithm uses two shared arrays: Doorway , and
Ticket . A process p sets Doorway [p] be true at line 3 to
indicate to other processes that it has started the doorway,
and then sets it to false at line 5 when it finishes the door-
way. At line 4 of the doorway, process p obtains a ticket
used to indicate its order of priority to enter the CS. In the
waiting room, process p waits for each other process q to fin-
ish the doorway (line 7), and then waits until it has priority
over q to enter the CS (line 8). Process p has priority over q
to enter the CS if either q is not requesting entry into the CS
(indicated by Ticket [q] = 0) or q’s ticket is larger than p’s
ticket (using process id’s to break ties between equal tickets).

4. LOCAL-SPIN k-EXCLUSION
In Figure 2 we present a k-exclusion algorithm that has

O(N) RMR complexity in the CC and DSM models. We ig-
nore in this section the shaded parts of the algorithm, which
are necessary to ensure FIFE holds. We explain the shaded
parts in the next section.

The high-level structure of the algorithm is similar to
Lamport’s bakery algorithm: processes choose a ticket in
the first part of the trying protocol, and then wait for pro-
cesses with lower-numbered tickets to execute through the
CS. There are two main differences between our algorithm
and Lamport’s algorithm. Firstly, processes announce their
ticket at the start of the trying protocol differently. Sec-
ondly, in our algorithm a process does not have to wait for

every process with a lower-numbered ticket to finish the CS,
but rather only waits until there are fewer than k processes
with lower-numbered tickets (line 19). We now explain the
algorithm in more detail.

Processes use two shared arrays to communicate with each
other: the Want array, and the Ticket array. The Want
array is used by processes to announce their wish to enter
the CS. In particular, the value stored in entry Want [p][q]
is a “ticket value”, and it indicates to process q whether p
is trying to enter the CS. When a process p is in the NCS,
Want [p][q] = ∞, indicating that p does not want to enter
the CS. When Want [p][q] = v for some value v 6= ∞, then
process p is outside of the NCS and is trying to enter the
CS with the ticket value v. Ticket values provide a rough
guideline for the order in which processes are admitted to the
CS. Ticket values are stored and generated using the shared
array Ticket . We now explain how these shared arrays are
employed in the trying and exit protocols of the algorithm.

The trying protocol (lines 14..21) consists of two parts:
the doorway, and the waiting room. The doorway consists
of lines 14..15. In this part of the trying protocol, a process
first announces itself at line 14 to all other processes with
the ticket it obtained in its previous passage (0 if it executed
no previous passage). A process then obtains a new ticket
at line 15. Once a process is done the doorway, it announces
the ticket it just obtained to all other processes at line 16.

One may wonder why it is not sufficient to simply start
the trying protocol by obtaining a new ticket (line 15) and
then announce it. This is due to a race condition that arises
otherwise, but we postpone discussion of this until after we
explain the next part of the algorithm.

After announcing its ticket, a process p initializes prede-
cessor set to be the set of all other processes in the system
(line 18). The predecessor set is intended to approximate
the set of processes that are trying to enter the CS concur-
rently with p and that have priority over p to enter the CS.
We say that a process q has priority over p if q and p choose
tickets tq and tp and (tq, q) < (tp, p).

The purpose of lines 19..21 is to prevent a process p from
entering the CS until enough processes are eliminated from
p’s predecessor set. To this end, p repeatedly checks the
state of all other processes still in its predecessor set in the

loop at line 20. Once p detects that a process q no longer
has priority over it, p removes q from its predecessor set at
line 21.

When the size of p’s predecessor set goes below k, p enters
the CS.

In the exit protocol (line 25), a process simply announces
to all other processes that it is returning to the NCS by
setting the appropriate values in the Want array to ∞.

We now explain the race condition that arises if line 14
is removed from the algorithm. If two processes p and q
execute line 15 concurrently, the following may occur: q
obtains a smaller ticket than p, but does not yet announce
the ticket at line 16. Process p then races ahead of q into
the waiting room. As q has not yet announced its ticket to
p, p will see that Want [q][p] = ∞, and so p will remove q
from its predecessor set. This is premature on p’s part, since
q actually has priority over p. When q executes the waiting
room, it also removes p from its predecessor set, since p has
a larger ticket than q. It is easy to see how this can lead to a
violation of k-exclusion for k = 1. More elaborate execution
scenarios can be constructed in which k-exclusion is violated
for k > 1.

The preceding scenario is avoided if q first announces the
ticket it obtained in its previous passage. Since q, in its
current passage, obtains a ticket smaller than p, the ticket
q announces at line 14 is also guaranteed to be smaller than
p’s ticket. Moreover, by the time p starts the waiting room,
q will have finished line 14, otherwise q will obtain a ticket
larger than p. Thus, when p executes the waiting room, it
will not remove q from its predecessor set prematurely.

4.1 Notation
Below we prove that the k-exclusion algorithm in Figure 2

is correct. Our proof of correctness uses notation similar
to that used by Lamport [18, 19] for describing the order
in which processes execute operations. In particular, if A
and B are operations (not necessarily atomic), the notation
A → B denotes that A ends before B starts, and A 99K B
denotes that B does not end before A starts.

In our proofs we make use of two simple facts about the →
and 99K relations that follow from the preceding definitions:
(a) A 99K B ⇔ B 6→ A, and (b) A → B 99K C → D ⇒ A →
D.

Processes can execute multiple passages of the algorithm,
and so to be strictly accurate in our proofs, whenever we
refer to a process executing an operation, we should also
specify the passage being executed. However, to avoid un-
necessary complexity in our notation, if we do not have to
reason across multiple passages, we omit specifying the pas-
sage and assume that the passage being executed by each
process is the“current”(i.e., latest) one with respect to some
point in the execution.

4.2 Proof of Correctness
Let Cp denote the operation in which process p chooses its

ticket at line 15, and let EPp denote the operation in which
p executes its exit protocol at line 25.

Lemma 1. Let p and q be distinct processes. If Cp → Cq,
then tp < tq, where tp and tq are the tickets chosen by p and
q, respectively.

Proof. Process p finishes line 15 before q starts it, and so
the value that q reads from Ticket [p] at line 15 is no smaller

than tp. This and inspection of line 15 imply that the ticket
tq that q chooses satisfies tq > tp.

As a corollary to the preceding lemma, we state its con-
trapositive:

Corollary 2. Let p and q be distinct processes, and sup-
pose p and q choose tickets tp and tq. If tq ≤ tp, then
Cq 99K Cp.

Lemma 3. Let p and q be distinct processes, and suppose
p and q obtain tickets tp and tq, respectively. If (tq, q) <
(tp, p), then p does not remove q from p.predecessor set be-
fore EPq starts.

Proof. Suppose, by way of contradiction, that p removes
q from p.predecessor set at line 21 before EPq starts. At
line 21, p reads a value wq in Want [q][p] such that (tp, p) <
(wq, q) (denote this read operation R) before EPq starts.
Process q writes into Want [q][p] at most three times in its
passage: at line 14 it writes the ticket t′q < tq that it chose
in its preceding passage (denote this write operation W1);
at line 16 it writes tq (denote this write operation W2); and
finally, at line 25, it writes ∞ (denote this write operation
W3).

Claim 3.1. R → W3.

Proof. The claim follows from the following two facts:
(i) R happens before EPq starts, and (ii) W3 occurs entirely
as part of EPq. (Claim 3.1)

Claim 3.2. W1 → R.

Proof. By the assumption that (tq, q) < (tp, p), tq ≤ tp.
This and Corollary 2 imply that Cq 99K Cp. By inspection
of the algorithm, W1 → Cq and Cp → R. Thus, W1 →
Cq 99K Cp → R, and so W1 → R. (Claim 3.2)

Read and write operations are atomic, which implies that
either R → W2, or W2 → R. We consider these cases sep-
arately. In the first case, by Claim 3.2, W1 → R → W2.
W1 and W2 are successive writes into Want [q][p], and so
R must read the value written by W1, namely the ticket
t′q < tq that q chose in its preceding passage. By assumption,
(tq, q) < (tp, p), which implies that tq ≤ tp; since t′q < tq,
we have t′q < tp. That is, R must read a value t′q such that
t′q < tp. This contradicts that R reads a value wq such that
(tp, p) < (wq, q), i.e., wq ≥ tp.

In the second case, W2 → R. This and Claim 3.1 imply
that W2 → R → W3. W2 and W3 are successive writes
into Want [q][p] and so the value wq that R reads must be
the value tq written by W2, i.e., wq = tq. By assumption,
(tq, q) < (tp, p), which contradicts that (tp, p) < (wq , q).

Lemma 4. The algorithm in Figure 2 satisfies k-exclusion.

Proof. Suppose, by way of contradiction, that k+1 pro-
cesses are in the CS concurrently. Let Y be this set of
processes, and let p be the process in Y with the largest
(ticket , process id) pair. By Lemma 3, when p executes the
trying protocol, p does not remove any process in Y from
p.predecessor set before some process in Y starts the exit
protocol. This implies that the size of p’s predecessor set is
at least k until after some process in Y leaves the CS. Thus
p cannot enter the CS until after some process in Y leaves
the CS, which contradicts that p is in the CS concurrently
with all processes in Y .

(Shaded parts of this algorithm are necessary to satisfy FIFE.)

shared variables:

Want : array[1..N][1..N] of N ∪ {∞} init all ∞
Ticket : array[1..N] of N init all 0

Capture : array[1..N][1..N] of N init all 0

(DSM model: Ticket [p], Want [i][p], Capture [i][p] are local to process p for all i)

private variables:

predecessor set : Set of N

captured : boolean

loop12

NCS13

foreach i ∈ {1..N} \ {p} do Want [p][i] := Ticket [p]14

Ticket [p] := 1 + max(Ticket [1], Ticket [2], ..., Ticket [N])15

foreach i ∈ {1..N} \ {p} do Want [p][i] := Ticket [p]16

captured := false17

predecessor set := {1..N} \ {p}18

while |predecessor set | ≥ k ∧¬captured do19

foreach i ∈ predecessor set do20

if (Ticket [p], p) < (Want [i][p], i) then predecessor set := predecessor set \ {i}21

foreach i ∈ {1..N} do if Ticket [p] < Capture [i][p] then captured := true22

foreach i ∈ {1..N} do Capture [p][i] := Ticket [p]23

CS24

foreach i ∈ {1..N} do Want [p][i] := ∞25

end loop26

Figure 2: (Atomic Reads/Writes) k-exclusion algorithms for process p ∈ {1, ..., N}

Lemma 5. The algorithm in Figure 2 satisfies starvation
freedom.

Proof. Suppose, by way of contradiction, that starva-
tion freedom does not hold. Let Y be the set of non-faulty
processes that are stuck forever in the TP, and let p be the
process in Y with the smallest (ticket , process id) pair.

By inspection of the code, we see that p removes from
its predecessor set any process that it sees as having an-
nounced a larger (ticket , process id) pair or as having re-
turned to the NCS. This, the fact that process’ tickets in-
crease monotonically, and the assumption that p has the
smallest (ticket , process id) pair of all the non-faulty pro-
cesses that get stuck forever, imply that eventually the only
processes in p’s predecessor set are crashed processes. How-
ever, there are at most k − 1 crashed processes, and so p
eventually enters the CS, contradicting that p never enters
the CS.

Lemma 6. The algorithm in Figure 2 satisfies k-FCFS.

Proof. Let Y be a set of processes such that |Y | = k, and
assume all processes in Y finish the doorway before a process
p starts the doorway. Thus ∀q ∈ Y , Cq → Cp. This and
Lemma 1 (with the roles of p and q interchanged) imply that
each process in Y obtains a ticket strictly smaller than the
ticket that p obtains. By Lemma 3, during p’s execution of
the trying protocol, p does not remove any process in Y from
p.predecessor set until at least one process in Y completes
the CS. This implies that the size of p.predecessor set will

be at least k until some process in Y executes through the
CS. Process p does not enter the CS until the size of its
predecessor set is less than k, and so p does not enter the
CS until some process in Y enters the CS.

Lemma 7. A process makes Θ(N) RMRs in a passage of
the algorithm in Figure 2 in the DSM and CC models.

Proof. We do the proof for the DSM model here and
omit the proof for the CC model due to space limitations.

A process p announces itself twice to every other process
in the system: once when it first leaves the NCS (line 14),
and a second time after it obtains its ticket (line 16). Each
of these announcements incurs Θ(N) RMRs. Obtaining a
ticket also incurs Θ(N) RMRs. No RMRs are made while
waiting in the loop at line 19. Finally, in the exit protocol,
p withdraws its announcement to enter the CS from every
other process exactly once. This also incurs Θ(N) RMRs.
Thus the RMR complexity is Θ(N).

Theorem 8. The unshaded portion of the algorithm in
Figure 2 satisfies k-exclusion, starvation freedom, and k-
FCFS. Moreover, it has RMR complexity Θ(N) in the CC
and DSM models.

Proof. The result follows from Lemmas 4, 5, 6, and
7.

5. FIFE k-EXCLUSION
The algorithm presented in the preceding section does not

satisfy the FIFE property. To see why, we illustrate a sce-
nario in which FIFE is violated by the unshaded portion of
the algorithm in Figure 2.

Assume that k = 2, and consider the following execution
of processes p1, p2, p3, and p4: Process p1 executes its door-
way entirely, choosing a ticket tp1

> 0. After this, process p2

executes its doorway and advances into the CS. Process p3

and process p4 then execute their doorway, choosing tickets
tp3

and tp4
, both of which are larger than tp1

. Process p3

and p4 then stop taking steps temporarily. We assume this
is the first time processes p3 and p4 have left the NCS, and
so Want [p3][p1] = 0 and Want [p4][p1] = 0. This implies that
when p1 executes the loop at line 20, p1 does not remove p3

or p4 from p1.predecessor set , and hence does not advance
into the CS, until either p3 writes Want [p3][p1] = tp3

or
p4 writes Want [p4][p1] = tp4

(line 16). This violates FIFE,
which requires that p1 enters the CS in a bounded number
of its own steps after p2 enters the CS.

In this section we present a k-exclusion algorithm that
satisfies FIFE, which turns out to be a simple modification
of the preceding algorithm. The necessary modifications are
shown shaded in gray in Figure 2. As before, the doorway
consists of lines 14..15.

FIFE says that if a process p finishes the doorway be-
fore a process q starts the doorway, and q enters the CS
before p, then p enters the CS in a bounded number of its
own steps. To ensure this, just before the process q enters
the CS, q captures all processes that have a smaller ticket
(line 23). In particular, since process p finishes the doorway
before q starts the doorway, process p’s ticket will be strictly
smaller than q’s ticket. Process q captures p by setting the
value of Capture [q][p] to q’s current ticket. This and the fact
that p has a smaller ticket than q, means that after q enters
the CS, it will be the case that Ticket [p] < Capture [q][p].
The next time process p evaluates the condition Ticket [p] <
Capture [q][p] at line 22, p sets captured = true, allowing p to
terminate the loop at line 19 and enter the CS in a bounded
number of its own steps, as required to satisfy FIFE.

With this modification we open an additional path for a
process to enter the CS – by finding that it has been cap-
tured. Starvation freedom is clearly not affected by this,
but there is the potential for k-exclusion to be violated since
it is now “easier” for a process to enter the CS. This does
not happen, although the details behind why are somewhat
subtle. Intuitively, the algorithm protects against this possi-
bility by allowing processes to only capture other processes
with smaller tickets.

Theorem 9. The algorithm in Figure 2 satisfies k-
exclusion, starvation freedom, and FIFE. Moreover, it has
RMR complexity Θ(N) in the DSM and CC models.

6. k-EXCLUSION USING NON-ATOMIC
READS AND WRITES

The algorithms presented above are correct when atomic
reads and writes are used. A simple way to transform these
algorithms to work with non-atomic reads and writes is to
use Lamport’s register constructions [19]. Recall, atomic
(non-atomic) reads and writes in this paper have the same
semantics as defined by Lamport for multireader single-
writer atomic (safe) registers. Using Lamport’s construc-

tions, we can construct atomic registers from safe registers,
i.e., simulate atomic reads and writes by using only non-
atomic reads and writes.

The problem with using register constructions is that they
are inefficient, since they increase the RMR and space com-
plexity of an algorithm by at least a factor of Ω(N). It
turns out that we can do better than this. In this section we
modify the FIFE k-exclusion algorithm in Figure 2, without
affecting either its asymptotic RMR or space complexity, so
that it works when reads and writes are non-atomic. The
new algorithm is given in Figure 3. The trying protocol con-
sists of lines 29..45, and the doorway consists of lines 29..31.

To understand the new algorithm, we first explain why
the algorithm in Figure 2 does not satisfy k-exclusion, star-
vation freedom, or FIFE if reads and writes are non-atomic.
The problem is that there are no guarantees on the value a
process reads from a variable if some other process is con-
currently writing the variable. Consider, for example the
case when k = 1. Suppose processes p and q concurrently
execute line 15, and that p and q choose tickets tp and tq,
respectively. Further suppose that tq < tp and that after p
and q are both done choosing tickets (line 15), q temporar-
ily stops taking steps. Process p races ahead of q into the
loop at line 19, and starts reading Want [q][p] at line 21. At
the same time, q starts writing Want [q][p] at line 16. Since
the reads and writes are not atomic, p can read any value
from Want [q][p]. In particular, suppose that p reads a value
from Want [q][p] such that tp < Want [q][p]. In this case, p
removes q from its predecessor set. All other processes are
in the NCS, and so p removes them from its predecessor set
as well and advances into the CS. When q reaches line 21, it
evaluates (tq, q) < (Want [p][q], p) to be true, since the ticket
tp that p last wrote to Want [p][q] is larger than the ticket tq

that q chose. Thus q will remove p from its predecessor set,
along with all the other processes, which are in the NCS. Af-
ter this, q advances into the CS, and k-exclusion is violated
for k = 1. A more complex scenario can be constructed for
k = 2 to illustrate that starvation freedom and FIFE also
do not hold.

To solve this problem, we employ a technique similar to
one used in Lamport’s register constructions. The tech-
nique involves reading variables in the opposite order of
which they are written. We “duplicate” each Want [i][j] and
Capture [i][j] variable in our algorithm. That is, for each i, j,
we create Want [i][j][1], Want [i][j][2], Capture [i][j][1], and
Capture [i][j][2]. Wherever a write of value v to Want [i][j]
occurs in the algorithm in Figure 2, in the new algorithm
we write v to Want [i][j][1] and Want [i][j][2], in that or-
der. Wherever a read of variable Want [i][j] occurs in
the algorithm in Figure 2, in the new algorithm we read
Want [i][j][2] and Want [i][j][1], in that order. Reading and
writing Capture [i][j][1] and Capture [i][j][2] in the new algo-
rithm is done analogously. Note that in the algorithm we
present the duplicate writes on the same line (e.g., line 30).
We use this notation for compactness; the writes are still
distinct (non-atomic) operations and occur in the order that
they appear on the line.

There is also a new condition checked at line 44 that was
not in the version of the algorithm with atomic reads and
writes. In that version, there was no harm in p capturing i
repeatedly in successive passages. Here, however, if p con-
tinues capturing i in each passage that p executes, it could
be that every time that i checks to see if it is captured by

shared variables:
Want : array[1..N][1..N][1..2] of N ∪ {∞} init all ∞
Ticket : array[1..N] of N init all 0
Capture : array[1..N][1..N][1..2] of N init all 0

(DSM model: Ticket [p], Want [i][p][j], and Capture [i][p][j] are local to process p for all i, j)

private variables:

predecessor set : Set of N

captured : boolean

loop27

NCS28

foreach i ∈ {1..N} \ {p} do29

Want [p][i][1] := Ticket [p];Want [p][i][2] := Ticket [p]30

Ticket [p] := 1 + max(Ticket [1], Ticket [2], ..., Ticket [N])31

foreach i ∈ {1..N} \ {p} do32

Want [p][i][1] := Ticket [p];Want [p][i][2] := Ticket [p]33

predecessor set := {1..N} \ {p}34

captured := false35

while |predecessor set | ≥ k ∧ ¬captured do36

foreach i ∈ predecessor set do37

if (Ticket [p], p) < (Want [i][p][2], i) then38

if (Ticket [p], p) < (Want [i][p][1], i) then predecessor set := predecessor set \ {i}39

foreach i ∈ {1..N} do40

if Ticket [p] < Capture [i][p][2] then41

if Ticket [p] < Capture [i][p][1] then captured := true42

foreach i ∈ {1..N} do43

if Capture [p][i][1] ≤ Ticket [i] then44

Capture [p][i][1] := Ticket [p];Capture [p][i][2] := Ticket [p]45

CS46

foreach i ∈ {1..N} do47

Want [p][i][1] := ∞;Want [p][i][2] := ∞48

end loop49

Figure 3: (Non-atomic Reads/Writes) FIFE k-exclusion algorithm for process p ∈ {1, ..., N}

p (on lines 41..42), it happens to read Capture [p][i][1] and
Capture [p][i][2] as p is writing into them (on line 45) and
so it does not find that it is captured. This neutralizes the
capturing mechanism and can result in a violation of FIFE.
To avoid the problem p does not attempt to capture any
process it previously captured, by performing the test on
line 44.

To gain some understanding about how the preceding
changes fix the algorithm, consider again the problem sce-
nario that we described above in which k-exclusion was vi-
olated. Process p and q leave the NCS for the first time,
write 0 into all Want entries in the loop at line 29, and then
concurrently execute line 31. Process p chooses a ticket tp

larger than the ticket tq that q chooses, i.e., tq < tp, after
which process q temporarily stops taking steps. Process p
then races ahead of q into the loop at line 36. When p tests
the condition at line 38, the only way p evaluates it to be
true is if q writes Want [q][p][2] at the same time that p reads
Want [q][p][2]. For q to write Want [q][p][2] (line 33), it must
first finish writing Want [q][p][1] (line 33). Thus, when p
checks the condition at line 39, p will evaluate it to be false
unless q starts another write of Want [q][p][1] concurrently

with p’s read of Want [q][p][1]. However, for this to happen,
q must start another passage of the algorithm, in which case
it is safe for p to remove q from p’s predecessor set.

The complete proof of this algorithm’s correctness is some-
what delicate, as is common with algorithms in the model
with non-atomic operations.

Theorem 10. The algorithm in Figure 3 satisfies k-
exclusion, starvation freedom, and FIFE when reads and
writes are non-atomic. Moreover, it has RMR complexity
Θ(N) in the DSM and CC models.

7. CONCLUSION
We have presented the first known k-exclusion algorithms

that are local-spin in the CC and DSM models and that use
only atomic reads and writes, along with a version of the
algorithm that works even if the read and write operations
are not atomic. These algorithms are structured with the
same elegance of Lamport’s Bakery algorithm.

One desirable feature of the Bakery algorithm that is not
present in our k-exclusion algorithms is that each process
resets its ticket to zero in the exit protocol. This means

that if there is a period of quiescence in which all processes
are in the NCS, all tickets will be reset to zero. In contrast,
the tickets in our algorithms necessarily grow without bound
and are never reset. We have developed more complex algo-
rithms in which tickets are reset to zero in the exit protocol,
but omit them from this paper due to space limitations [7].
Like the Bakery algorithm, tickets can still grow without
bound in these algorithms if at all times some process is
outside its NCS.

There exist variations of Lamport’s Bakery algorithm for
mutual exclusion [16, 22] in which tickets are bounded and
each shared variable requires only Θ(log N) bits. The tech-
niques used in these papers, unfortunately, are not easily
adapted to our algorithms, since they rely on the fact that at
most one process can execute through the CS at a time. Afek
et al. [1] use a more generic scheme, known as a bounded
concurrent timestamp system (BCTS) [11], to bound tick-
ets in their Bakery-like (non-local-spin) k-exclusion algo-
rithm. However, the BCTS implementation in [11] requires
large shared variables each with size Ω(N) bits. In fact, all
bounded timestamp systems require Ω(N) bits per times-
tamp [15], and thus tend to be impractical. Furthermore, a
process executing the algorithm of Afek et al. can make an
unbounded number of calls to the BCTS while waiting to en-
ter the CS, and it is not clear how these calls can be made so
as to incur only a bounded number of RMRs. Finding a vari-
ant of our algorithms that are local-spin and use bounded
tickets, preferably requiring O(log N) bits per timestamp,
remains an open problem.

We also leave open the problem of determining whether
(and, if so, how) the RMR complexity of k-exclusion depends
on k. This is not known both for algorithms that use only
read and write operations, and for algorithms that can use
more powerful synchronization primitives.

Acknowledgements. The author would like to thank
Vassos Hadzilacos, Wojciech Golab, Hyonho Lee, and the
anonymous referees for their helpful comments on prelimi-
nary versions of this paper.

8. REFERENCES
[1] Y. Afek, D. Dolev, E. Gafni, M. Merritt, and

N. Shavit. A bounded first-in, first-enabled solution to
the ℓ-exclusion problem. ACM Transactions on
Programming Languages and Systems, 16(3):939–953,
1994.

[2] R. Alur and G. Taubenfeld. Results about fast mutual
exclusion. In Proc. of 13th RTSS, pages 12–21, 1992.

[3] J. H. Anderson, Y.-J. Kim, and T. Herman.
Shared-memory mutual exclusion: major research
trends since 1986. Distriuted Computing,
16(2-3):75–110, 2003.

[4] J. H. Anderson and M. Moir. Using local-spin
k-exclusion algorithms to improve wait-free object
implementations. Distributed Computing, 11(1):1–20,
1997.

[5] H. Attiya, D. Hendler, and P. Woelfel. Tight RMR
lower bounds for mutual exclusion and other
problems. In Proc. of 40th STOC, pages 217–226, New
York, NY, USA, 2008.

[6] J. E. Burns and G. L. Peterson. The ambiguity of

choosing. In Proc. of 8th PODC, pages 145–157, New
York, NY, USA, 1989.

[7] R. Danek. Thesis (forthcoming). PhD thesis,
University of Toronto, 2010.

[8] R. Danek and H. Lee. Brief announcement: Local-spin
algorithms for abortable mutual exclusion and related
problems. In Proc. of 22nd DISC, pages 512–513, 2008.

[9] E. W. Dijkstra. Solution of a problem in concurrent
programming control. Communications of the ACM,
8(9):569, September 1965.

[10] D. Dolev, E. Gafni, and N. Shavit. Toward a
non-atomic era: ℓ-exclusion as a test case. In Proc. of
20th STOC, pages 78–92, New York, NY, USA, 1988.

[11] D. Dolev and N. Shavit. Bounded concurrrent
time-stamp systems are constructible. In Proc. of 21st
STOC, pages 454–466, New York, NY, USA, 1989.

[12] M. J. Fischer, N. A. Lynch, J. E. Burns, and
A. Borodin. Resource allocation with immunity to
limited process failure. In Proc. of 20th FOCS, pages
234–254, 1979.

[13] M. J. Fischer, N. A. Lynch, J. E. Burns, and
A. Borodin. Distributed FIFO allocation of identical
resources using small shared space. ACM Transactions
on Programming Languages and Systems,
11(1):90–114, 1989.

[14] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph.
Basic techniques for the efficient coordination of very
large numbers of cooperating sequential processors.
ACM Transactions on Programming Languages and
Systems, 5(2):164–189, 1983.

[15] A. Israeli and M. Li. Bounded time-stamps.
Distributed Computing, 6(4):205–209, 1993.

[16] P. Jayanti, K. Tan, G. Friedland, and A. Katz.
Bounding Lamport’s Bakery algorithm. In Proc. of
28th SOFSEM, pages 261–270, London, UK, 2001.

[17] L. Lamport. A new solution of Dijkstra’s concurrent
programming problem. Communications of the ACM,
17(8):453–455, August 1974.

[18] L. Lamport. On interprocess communication. Part I:
Basic formalism. Distributed Computing, 1(2):77–85,
1986.

[19] L. Lamport. On interprocess communication. Part II:
Algorithms. Distributed Computing, 1(2):86–101, 1986.

[20] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer
Systems, 9(1):21–65, February 1991.

[21] G. L. Peterson. Myths about the mutual exclusion
problem. Information Processing Letters,
12(3):115–116, 1981.

[22] G. Taubenfeld. The black-white Bakery algorithm and
related bounded-space, adaptive, local-spinning and
FIFO algorithms. In Proc. of 18th DISC, pages 56–70,
2004.

