
P
L
E
A
S
E
H
A
N
D

IN

UNIVERSITY OF TORONTO
Faculty of Arts and Science

AUGUST 2008 EXAMINATIONS

CSC 148 H1Y
Instructor(s): R. Danek

Duration — 3 hours
P
L
E
A
S
E
H
A
N
D

IN

Examination Aids: None.

Student Number:

Last (Family) Name(s):

First (Given) Name(s):

Do not turn this page until you have received the signal to start.

In the meantime, please read the instructions below carefully.

Instructions:

• Check to make sure that you have all 22 pages.

• Read the entire exam before you start.

• Not all questions are of equal value, so budget your time accordingly.

• You do not need to add import lines or do error checking unless ex-
plicitly required to do so.

• You do not need to write docstrings or comments unless explicitly
required to do so, although it may help get you part marks if your
answer is otherwise incorrect.

• If you use any space for rough work, indicate clearly what you want
marked.

Marking Guide

1: / 10

2: / 10

3: / 14

4: / 10

5: / 10

6: / 10

7: / 8

8: / 12

9: / 16

TOTAL: /100

Page 1 of 22 Good Luck! cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 1. [10 marks]

This question is on both this page and the next.

In this question, assume we have the following Stack implementation, which is identical to the one you
saw in lecture:

class Stack:

def __init__(self):

’’’Make a new empty stack.’’’

self.stack = []

def push(self, o):

’’’Push o onto the top of the stack.’’’

self.stack.append(o)

def pop(self):

’’’Pop and return the top element of the stack.’’’

return self.stack.pop()

def top(self):

’’’Return the top element of the stack.’’’

return self.stack[-1]

def isEmpty(self):

’’’Return True if the stack is empty, and False otherwise.’’’

return self.stack == []

def size(self):

’’’Return the number of elements in the stack.’’’

return len(self.stack)

Below you are given a partial implementation of the Queue ADT. As you can see, it does not use a python
list like we did in lecture; instead, it makes use of a Stack instance.

class Queue:

def __init__(self):

’’’Make an empty queue.’’’

self.container = Stack()

def enqueue(self, o):

’’’Add o to the end of the queue.’’’

self.container.push(o)

def size(self):

’’’Return the number of elements in the queue.’’’

return self.container.size()

Page 2 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Ignore style and efficiency issues in answering the following questions.

Part (a) [4 marks]

Is the implementation of dequeue below correct, assuming the other methods in the Queue class are correct?

Yes No (circle one)

If it is not correct, briefly explain in plain english why not.

def dequeue(self):

’’’Remove the front element from the queue and return it.’’’

tmpstack = Stack()

elt = self.container.pop()

while not self.container.isEmpty():

tmpstack.push(elt)

elt = self.container.pop()

self.container = tmpstack

return elt

SOLUTION: The implementation assumes that the next item to dequeue is at the bottom of the
stack. However, when pushing items from self.container to tmpstack, the items on the stack are
reversed. This means that after self.container is assigned tmpstack, the assumption that the next
item to dequeue is at the bottom of the stack no longer holds.

Page 3 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Part (b) [4 marks]

Is the implementation of dequeue below correct, assuming the other methods in the Queue class are correct?

Yes No (circle one)

If it is not correct, briefly explain in plain english why not.

def dequeue(self):

’’’Remove the front element from the queue and return it.’’’

return self.container.stack.pop(0)

Part (c) [2 marks]

Is it possible to implement the Priority Queue ADT using an instance of Stack?

Yes No (circle one)

Page 4 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 2. [10 marks]

The power set of a set S is the set of all possible subsets of S. For example, the power set of {2, 3, 4} is
{{}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}.

Write a recursive function powerset(S) that returns the power set of the set S.

Note: Although python has a set data type, assume that we represent sets in this question using python
lists. For example, a valid call to your function is powerset([2,3,4]), which should return [[],[2],[3],

[4],[2,3],[2,4], [3,4],[2,3,4]]. The order of elements does not matter.

SOLUTION:

def powerset(S):

’’’Return the powerset of S.’’’

The base case is the empty set.

if S == []:

return [[]]

To determine the power set of S, first use recursion to determine the

power set of S[1:] (i.e., the set S excluding its first element).

tmpset = powerset(S[1:])

ret = []

The power set of S consists of all the sets of powerset(S[1:]), plus each

of those sets with S[0] added to it.

for subset in tmpset:

ret.append(subset)

make a copy of the current subset and add S[0] to it

tmp = subset[:]

tmp.append(S[0])

ret.append(tmp)

return ret

Page 5 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 3. [14 marks]

Part (a) [6 marks]

For part (a) only, correct answers are worth 2 marks, incorrect answers receive -1 mark penalty, and no
answer is worth 0 marks. (The minimum grade for part (a) is 0.)

Circle True or False for each statement.

(2 marks) log10(n
4) is O(log2(n)). True False

(2 marks) n(n − 4) is O(n3). True False

(2 marks) n is O(1). True False

Part (b) [2 marks]

Using big-oh notation, state the worst-case time complexity of the following function in terms of n, the
length of the input list. Give the strongest answer that you can, that is, the tightest bound. You do not
have to justify your answer.

Answer: O(n ∗ log(n))

def func(inlist):

n = len(inlist)

sum = 0

for i in range(n):

cur = n

sum = sum + cur

while cur > 0:

cur = cur / 2

Part (c) [2 marks]

Using big-oh notation, state the worst-case time complexity of the following function in terms of n, the
length of the input list. Give the strongest answer that you can, that is, the tightest bound. You do not
have to justify your answer.

Answer: O(n)

def func(inlist):

n = len(inlist)

sum = 0

cur = n

for i in range(n):

sum = sum + cur

while cur > 0:

cur = cur / 2

Page 6 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Part (d) [4 marks]

Using big-oh notation, state the worst-case time complexity of the following function in terms of n, the
length of the input list. Give the strongest answer that you can, that is, the tightest bound. Assume that
all operations on the Queue used in the function take O(1) time. Briefly justify your answer in plain

english, using no more than a few sentences.

def func(inlist):

’’’

Perform some computation using inlist,

where inlist is a list of non-negative integers.

’’’

n = len(inlist)

q.enqueue(inlist[0])

idx = 1

while not q.isEmpty():

elt = q.dequeue() (*)

while idx < elt and idx < n:

q.enqueue(inlist[idx])

idx = idx + 1

SOLUTION: Worst-case time complexity is O(n). Here’s why:
One item is added to the queue at the beginning of the function, and the rest are added to the queue
in the inner-loop. The inner-loop executes at most O(n) times in total, which follows from the loop
termination condition and the fact that idx starts at 1 and is incremented in each iteration of the
inner-loop. This implies that at most O(n) items can be added to the queue, which, in turn, implies
that at most O(n) items can be removed from the queue. Since the outter-loop dequeues a single
item in each iteration at line (*) and terminates when there are no more items in the queue, it follows
that the function terminates after at most O(n) steps.

Page 7 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 4. [10 marks]

Consider the class BTNode that could be used to implement a binary tree.

class BTNode:

def __init__(self, label):

self.label = label # the label for this tree node

self.left = None # the root node of the left subtree

self.right = None # the root node of the right subtree

Write a recursive function construct(preorder, inorder) that takes as arguments two lists of labels.
The first argument, preorder, is the sequence in which nodes are visited in a preorder traversal of some
tree, and the second argument, inorder, is the sequence in which nodes are visited in an inorder traversal
of the same tree. The return value from the function is the root BTNode instance of the tree defined by the
traversals.

For example, after the following call

btroot = construct([’A’,’B’,’C’], [’B’,’A’,’C’])

the following will hold:

btroot.label == ’A’

btroot.left.label == ’B’

btroot.left.left == None

btroot.left.right == None

btroot.right.label == ’C’

btroot.right.left == None

btroot.right.right == None

Begin writing the function on the next page.

Page 8 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

SOLUTION:

def construct(preorder, inorder):

the base case is when the traversals contain no elements

if preorder == []:

return None

the root element is the first element of the preorder list.

root = BTNode(preorder[0])

Scan the inorder list to see where preorder[0] occurs.

This will define the dividing point between the

traversals of the left and the right subtrees.

i = 0

while inorder[i] != preorder[0]:

i = i + 1

root.left = construct(preorder[1:i+1], inorder[:i])

root.right = construct(preorder[i+1:], inorder[i+1:])

return root

Page 9 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 5. [10 marks]

Part (a) [5 marks]

Assume that we insert the following items into a min heap, in order: 3, 6, 9, 12, 15, 1. Draw the tree
representation:

SOLUTION:

1

/ \

6 3

/ \ /

12 15 9

Fill in the Python list that stores this heap:

[1 , 6 , 3 , 12 , 15 , 9]

Part (b) [5 marks]

Assume that we insert the following items into a min heap, in order: 21, 18, 15, 12, 9, 6, 3. After inserting
these items, we remove the min element from the heap twice. Draw the tree representation once these
operations are finished (you may wish to use one of the rough-work pages at the end of the exam):

SOLUTION:

9

/ \

12 18

/ \

21 15

Fill in the Python list that stores this heap:

[9 , 12 , 18 , 21 , 15]

Page 10 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 6. [10 marks]

Consider the classes LinkedList and Node that are used to implement a linked list, and the function
search that can be used for searching linked lists.

class Node:

def __init__(self, data):

self.data = data # the data stored in this node

self.next = None # the next item in the list

class LinkedList:

def __init__(self):

self.head = None

implementation details of other list methods omitted ...

def search(llist, data):

’’’

Return a 2-element tuple (prev, node), where node is the Node instance

containing data and prev precedes node in llist.

’’’

implementation omitted

Using the search function, write a function swap(llist, data1, data2) that takes the LinkedList

llist as an argument and swaps the positions of the nodes containing data data1 and data2. You
may assume in your function that nodes containing data1 and data2 exist and are unique. Furthermore,
to simplify your code, you may assume that the node containing data1 is earlier in llist than the node
containing data2.

Note: Do not simply swap the data in the two nodes. This is not what the question is asking for. It is
strongly recommended that you draw a diagram to help you out. Also, think carefully about the different
cases that you have to handle.

Implement the method on the next page.

Page 11 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

SOLUTION:

def swap(llist, data1, data2):

(prev1, node1) = search(llist, data1)

(prev2, node2) = search(llist, data2)

if prev1 is None:

node1 is the head of the list.

Update node2 to be the new head of the list

llist.head = node2

else:

prev1.next = node2

if node1 != prev2:

nodes are not adjacent

swap node1.next and node2.next (can also be done with a tmp variable)

node1.next, node2.next = node2.next, node1.next

prev2.next = node1

else:

nodes are adjacent

node1.next = node2.next

node2.next = node1

Page 12 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 7. [8 marks]

Part (a) [2 marks]

In a binary search tree, given a node n with two children, where is n’s successor node? Answer in one
sentence.

Node n’s successor is the leftmost child of the right subtree.

Part (b) [3 marks]

You are given a binary search tree below. Draw the tree after deleting node 9.

12

7 15

5 9

10

11

SOLUTION:

12

/ \

7 15

/ \

5 10

\

11

Page 13 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Part (c) [3 marks]

You are given a binary search tree below. Draw the tree after deleting node 7. (Use either the delete
method we studied in lecture, or the modification you implemented in the lab.)

12

7 15

5 9

10

11

SOLUTION:

12 12

/ \ / \

9 15 or 5 15

/ \ \

5 10 9

\ \

11 10

\

11

Page 14 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 8. [12 marks]

Part (a) [8 marks]

Define a triangle in an undirected graph to be a set of 3 vertices such that there is an edge between each
pair of vertices in the set. For example, the following graph has two triangles: {0, 1, 2} and {0, 3, 4}.

0

1

2

3

4

5

6

We say that a vertex v is in a triangle if there is a triangle in the graph that contains vertex v. For
example, in the above graph, 5 and 6 are the only vertices not in any triangle.

You are given the following Graph class and its init method:

class Graph:

’’’

An undirected graph represented using an adjacency matrix.

’’’

def __init__(self, n):

’’’Create an empty graph with n vertices.’’’

self.n = n

self.matrix = [[0]*n for i in range(n)]

other methods for adding edges, getting neighbours, etc. omitted

In the above code, the matrix instance variable is an adjacency matrix for an undirected graph. Vertices
are non-negative integers less than self.n, and entries self.matrix[v1][v2] and self.matrix[v2][v1]

equal 1 if and only if there is an edge between vertices v1 and v2 in the graph.

Add to the Graph class a method is in triangle(self, v) that returns True if the vertex v is in a
triangle, and False otherwise. Your method should take time O(n2), where n is the number of vertices in
the graph.

Implement the method on the next page. Hint: Your method should be no more than 7 - 8 lines of code.
If it’s any longer, you’re probably on the wrong track.

Page 15 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

SOLUTION:

def is_in_triangle(self, v):

test every distinct triple of vertices containing v to

see if they form a triangle

for i in range(self.n):

if self.matrix[v][i] == 1:

for j in range(self.n):

if self.matrix[i][j] == 1 and self.matrix[v][j] == 1:

return True

return False

Part (b) [4 marks]

Define a sink to be a vertex in a directed graph that has no outgoing edges and at least one incoming edge.
Define a source to be a vertex in a directed graph that has no incoming edges and at least one outgoing
edge. Draw a directed graph that has exactly one source and one sink, but for which there is no
path between the two. Label the source and the sink in your graph.

SOLUTION:

OOO ----> OOO OOO --------> OOO

/\| /\|

| | | |

| | | |

| \/ | \/

OOO OOO

Each line of 3 O’s represents a node. The source is node

on the far left, and the sink is the node on the far right.

Page 16 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Question 9. [16 marks]

Part (a) [4 marks]

def mystery(inlist):

’’’

Perform some computation on inlist, where inlist

is a non-empty list of integers.

’’’

sublists = [[]]

last = inlist[0]

sublists[0].append(last)

idx = 1

n = len(inlist)

while idx < n:

if inlist[idx] < last:

sublists.append([])

sublists[-1].append(inlist[idx])

last = inlist[idx]

idx = idx + 1

return sublists

Page 17 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

def mysteryprint(inlist):

’’’

Print some information based on inlist, where inlist

is a non-empty list of integers.

’’’

sublists = mystery(inlist)

mysublist = sublists[0]

mylen = len(sublists[0])

for b in sublists:

if len(b) > mylen:

mylen = len(b)

mysublist = b

print mysublist

Describe in plain english using one sentence what mysteryprint prints to the screen. Be specific
about how the output relates to the original input list.

SOLUTION: mysteryprint prints the first occurrence of the longest contiguous sequence of sorted
integers in inlist.

Page 18 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

Part (b) [12 marks]

It turns out that we can use the return value from mystery to implement a sorting method as follows:

def mysterysort(inlist):

’’’ Return a sorted list of items consisting of the items in inlist. ’’’

sublists = mystery(inlist)

while len(sublists) > 1:

newlists = []

curlist = 0

while curlist + 1 < len(sublists):

list1 = sublists[curlist]

list2 = sublists[curlist+1]

tmp = mysteryhelper(list1, list2)

curlist = curlist + 2

newlists.append(tmp)

if curlist < len(sublists):

newlists.append(sublists[curlist])

sublists = newlists

return sublists[0]

def mysteryhelper(list1, list2):

tmp = []

i = 0

j = 0

while i < len(list1) and j < len(list2):

if list1[i] < list2[j]:

tmp.append(list1[i])

i = i + 1

else:

tmp.append(list2[j])

j = j + 1

while i < len(list1):

tmp.append(list1[i])

i = i + 1

while j < len(list2):

tmp.append(list2[j])

j = j + 1

return tmp

Question is continued on the next page.

Page 19 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

This sorting method is very similar to a sorting method that we studied in class.

(2 marks) What is that sorting method? Merge sort

(1 mark) Circle one of the following. Asymptotically, the efficiency of mysterysort is

[better than / the same as / worse than]

the efficiency of the sorting method to which mysterysort is similar.

(2 marks) What is the main drawback that mysterysort suffers from in terms of its usage of space?

It requires a lot more space in addition to the original list being sorted (i.e., it is not “in-place”).

(1 mark) Name one sorting method that we studied in class that does not have this drawback:

Any one of quicksort, bubble sort, selection sort, insertion sort

(3 marks) Is mysterysort still a correct sorting method if mystery is replaced with the definition below?

Yes No (circle one)

In case it is no longer a correct sorting method, briefly describe why not.

def mystery(inlist):

ret = []

for i in range(len(inlist)):

ret.append([inlist[i]])

return ret

(3 marks) Is mysterysort still a correct sorting method if mystery is replaced with the definition below?

Yes No (circle one)

In case it is no longer a correct sorting method, briefly describe why not.

def mystery(inlist):

mid = len(inlist) / 2

return [inlist[0:mid], inlist[mid:]]

SOLUTION: Mergesort requires that the sublists it merges are sorted. The two sublists returned
by this implementation of mystery may not satisfy that requirement.

Page 20 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Page 21 of 22 Student #: cont’d. . .

August 2008 Final Examination CSC 148 H1Y

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Total Marks = 100

Page 22 of 22 Student #: End of Final Examination

