CSC 148H L5101 Midterm 2003
Duration — 50 minutes
Aids allowed: none

Student Number: [| | | | | | | |

Lab day, time, room:

Last Name: First Name:

Do not turn this page until you have received the signal to start.
(Please fill out the identification section above,
and read the instructions below.) Good Luck!

This midterm consists of 3 questions on 5 pages (including this one). When

you receive the signal to start, please make sure that your copy is complete. #l_____ /11
Comments are not required except where indicated, although they may help # 2 /10
us mark your answers. They may also get you part marks if you can’t figure

out how to write the code. #3:_ /9
Write your student number at the bottom of pages 2-5 of this test.

If you use any space for rough work, please indicate clearly what you want TOTAL: /30

marked.

Total Pages = 5 Page 1 CONT’D. ..

CSC148H L5101 MIDTERM February 2003

Question 1. [11 MARKs]

Complete the bodies of methods queueToList(Queue) and lastTenNonEmptyValues(Node) in the two
classes QuestioniA and QuestioniB, according to their external and internal comments.

public interface Queue {
void enqueue(Object o);
String dequeue();
String head();
int size();

public class Node {
public String value;
public Node link;
public Node(String value) { this.value = value; }

}
public class QuestionlA {

/** Return a linked list containing the elements of ‘q’, in the same order.
* (in particular, if q isn’t empty the returned Node contains the value q.head()).
* Requires: q !'= null.
* Ensures: q.size() == 0.
* Qreturn the first Node (null if none) in the linked list of values. */
public static Node queueTolList(Queue q) {

if (q.size() == 0) { return null; }

Node first = new Node(q.dequeue()); // The first Node in the returned list.
Node last first; // The last Node in the returned list.

return first;

Student #:,_ , Page 2 of 5 CONT’D. ..

CSC148H L5101 MIDTERM February 2003

public class Q implements Queue {
/** A Q that can hold up to ‘capacity’ elements.
* Requires: capacity >= 0. */

public Q(int capacity) { /* body not shown */ }

// rest of class not shown

public class QuestioniB {
/** Return a Queue containing, in any order, the last ten non-empty Strings
* from the linked list ‘list’.
¥ If there are less than ten, return all of them.
* @param list the first Node (null if empty) in a linked list. */
public static Queue lastTenNonEmptyValues(Node list) {

Queue q = new Q(10); // this is the only instance of Q you may use.

// You may not traverse (loop over) the list more than once.
// Hint: there’s a reason we’re using a Queue.

return q;

Student #:, . . ., . Page 3 of 5 CONT’D. ..

CSC148H L5101

Question 2. [10 MARKs]

public class A {
public static void p(4 a) {
System.out.println("A.p");
a.m();
a.r();
}
public void m() {
System.out.println("A.m");
}
private void r() {
System.out.println("A.r");
}
}

public class M {

MIDTERM

public class B extends A {
public static void p(B b) {
System.out.println("B.p");
b.m();
}

public void m() {
System.out.println("B.m");
}
private void r() {
System.out.println("B.r");
}
}

public static void main(String[] args) {

B b = new B();
b.p(b);
A.p(b);
}
}

February 2003

Part (a) [5 MARKS] Draw the memory model when the beginning of line 1 of B’s method p is first

reached:

Part (b) [5 MaARKs] Write the output from running the entire program M:

Student #: |

Page 4 of 5

CONT'D. ..

CSC148H L5101 MIDTERM February 2003

Question 3. [9 MARKS)]

Part (a) [2 MARKS]

Write your student number at the bottom of every page of the midterm (except the front page).
Part (b) [7 MARKs]

Write the body of hasLine() in the following class.

You are not required to throw an exception if the user of hasLine() violates the precondition.

import java.io.*;

/** For reading lines from a BufferedReader without receiving IOExceptions. */
public class BRWrapper {

private BufferedReader br;
private String lastLine; // last line read by hasLine (if it was successful)

/** A BRWrapper returning lines from ‘br’.
* Requires: br != null. */
public BRWrapper(BufferedReader br) { this.br = br; }

/** Attempt to read the next line and return whether reading was successful.

* Requires: line() be called in-between calls to this method.

* Qreturn true iff there is a line *and#* there was no IOException while reading. */
public boolean hasLine() {

}

/** Return the line read by hasLine().
* Requires: hasLine() returned true.
* Ensures: returned value !'= null. */
public String line() {
return lastLine;

}

Total Marks = 30

Student #: _ , . . . Page 5 of 5 END OF EXAMINATION

