CSC148
Lecture 8

Algorithm Analysis
Sorting



Algorithm Analysis

« Recall definition of Big-Oh: We say a function
f(n) is O(g(n)) if there exists positive constants
c,B such that

- f(n) <=c*g(n) foralln >= B

« Let T(n) be the worst-case “running time” of an
algorithm on input size n. (In this context,
“‘running time” means the number of steps that
the algorithm takes.)



Algorithm Analysis

* Loosely speaking, we approximate T(n) by
finding a function g(n) such that T(n) is O(g(n)).

e Saying that this is an “approximation” for the
running time isn't entirely accurate. Consider
the algorithm for summing the numbers from 1
to n that we saw last week.



Algorithm Analysis

« The first algorithm, which loops through all the
numbers from 1 to n, has time complexity O(n).

* The second algorithm, which uses a formula,
has time complexity O(1).

* |s the following statement true: “both algorithms
have time complexity O(n*2)”?

* It is! Consider the definition of Big-Oh, and you
will see why.



Algorithm Analysis

« Clearly neither algorithm takes anywhere near
n"2 steps.

« We said that Big-Oh notation is used to
approximate T(n), but the last example
demonstrates that the notation can lead to
inaccurate approximations. What's going on??

* In actuality, Big-Oh notation gives us a
convenient way of expressing an upper-bound
on the running time of an algorithm.



Algorithm Analysis

e Saying that the summation algorithms take
O(n”2) time, although true, doesn't convey as
much information as we'd like.

* To make our upper-bound as meaningful as
possible, we want to make it “tight”.

* Intuitively, O(g(n)) is a tight upper-bound for
T(n) if g(n) is the smallest and simplest function
that satisfies the big-oh criteria.



Algorithm Analysis

* For example, O(n) is a tight upper-bound for 6n,
but O(n"2) is not.

» More precisely, if for every function h(n) such
that T(n) is O(h(n)) it is also true that g(n) is
O(h(n)), then we say g(n) is a tight asymptotic
bound on T(n).

- Think carefully about this definition. Why does it
capture the intuition described on the previous

slide?



Sorting

e Sorting methods that you've seen in 108:

— Bubble sort
- Selection Sort
- |Insertion sort

* These sorts all have time complexity O(n"2).

« We'll discuss a new sorting method, called
merge sort, that has time complexity O(n log n).



Merge Sort

* Merge sort recursively

— sorts the first half of the list
— sorts the second half of the list
- merges the two halves into a newly sorted list

e Lets assume we have a list in which the first
and second halves are sorted, but the whole list
itself may not be sorted.

« How can we merge the two halves to create a
new list that's sorted and contains all the
elements of the original list?



Merge Sort

« Examples of merge on board.



Merge Sort

« Before we can actually use the merge
procedure we just discussed, we have to
somehow get to the point where the two halves
of the list are sorted.

* This is done recursively.
« What is our base case?



Merge Sort

A list containing 1 element is sorted.



Merge Sort

« Advantages:

- O(n log n) time compelxity

 see discussion on board for why mergesort has this time
complexity

« Disadvantages

- requires additional space for the merged list



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

