CSC148H
Lecture 6

Binary Search Trees



Motivating Binary Search Trees

» Last week we saw examples of where a tree is
a more appropriate data structure than a linear

structure.

« Sometimes we may use a tree structure even if
a linear structure will do.

« Why?



Motivating Binary Search Trees

e For certain tasks, trees can be more efficient.
* One such task is searching.

e Suppose you have a linear structure, and you
want to find an element inside this structure.

- This means going through each element in the
structure one at a time until you find the desired
element.



Motivating Binary Search Trees

 We could alternatively store elements in a
Binary Search Tree (BST).

« ABST is a binary tree in which

- every node has a label (or “key”)
- every node label is

 greater than the labels of all nodes in its left subtree
* less than the labels of all nodes in its right subtree

» (examples on board)



Binary Search Trees

e How do we search for an element in a BST?



Binary Search Trees

« Why is searching for an element in a BST more
efficient than (linearly) searching for an element
in a list?

* Are there any cases where searching for an
element in a BST is no more efficient than
(linearly) searching for an element in a list?



Height of a Binary Tree

 What is the maximum height of a binary tree
with n nodes?

« What is the mininum height?

 What does a tree with minimum height (on n
nodes) look like?



Minimum Height of a Binary Tree

A minimum-height binary tree with n nodes is
a binary tree whose height is no greater than
any other binary tree with n nodes.



Complete Binary Tree

A complete binary tree with n nodes is a
binary tree such that every level is full, except
possibly the bottom level which is filled in left to
right.

« We say that a level k is full if k = 0 and the tree
IS non-empty; or if K > 0, level k-1 is full, and
every node in level k-1 has two children.

« Terminology alert: Some sources define a complete binary tree to be
one in which all levels are full, and refer to the definition above as an
“almost” complete binary tree.



Determining Minimum Height

» A binary tree with height h has at most 2™'-1
nodes. (Prove by induction.) In fact, there exists
a binary tree of height h having exactly 2"'-1
nodes.

* A minimum-height binary tree with height h has
at least 2" nodes. (Follows from the result
above.)

e Let T be a minimum-height binary tree with n
nodes and height h. By the two points above,
2" <=n <=2""-1. Thus floor(log n) = h.



Determining Minimum Height

* Previous slide implies that the minimum height
of any binary tree on n nodes is floor(log n)



Binary Search Trees

* If we can always ensure that a binary search
tree is roughly in the shape of a minimal-height
binary tree, then searching a binary tree will be

much more efficient than linearly searching a
list.

e You'll see more on this in later courses: “AVL

Trees”, “Red-Black Trees” are BSTs that are
balanced.



BST Operations

« So far we've only discussed searching for an
element in a BST

« What do we do once we found it?

* Right now, we can only really report whether it's
found or not, but in many applications we may
want to store some data with the node

* Your textbook calls the label of a node its key,
and the data associated with the node its value.



BST Operations

 In general, a BST can be used for mapping
keys to data values. (This is much like a
Python dictionary).

« Useful operations for such a structure include:

- has_key(key) — test if a node with the given key is
present in the tree

- get(key) — get data associated with the key
- put(key, val) — associate val with the given key
- delete(key) — remove a node



BST Representation

 How are we going to represent a BST?

 We can use the nodes and references
representation that we discussed last week.

 But what if a BST is empty? How do we keep
track of this?



BST Representation

« We use a TreeNode class to represent a node
in the BST

 We use a BinarySearchTree class to represent
the tree itself. This class has an attribute that
points to the root TreeNode of the tree.

» We'll define operations on the
BinarySearchTree class, but most of them will
just delegate to operations in the TreeNode
class



BST Representation

* Your textbook keeps track of the parent node of
each node in order to implement their version of

the delete method.

* There's a way to implement the delete method
without requiring the parent node explicitly be
kept track of.




BST Operations

 How do we implement get(key)?

* Implementing has key(key) can be done by
delegating to get(key) and checking if the
returned value is None



BST Operations

 How do we implement put(key) (i.e., insert a
node into the tree)?

« Keep in mind, we want to ensure the BST
property is maintained after the node is inserted
« Put operation is similar to the get operation

- the put operation follows the same path through the
tree as a get operation

- node is added at the end of the path



BST Operations - Deletion

« Removing a node (the delete(key)) operation is
the most complex

» Deleting a node with 0 or 1 children is easy, but
a node with 2 children is more difficult

« With O children, the node is just deleted.

« With 1 child, the child node can just be
promoted to the position of the deleted node.



BST Operations - Deletion

* |f the node being deleted has two children, then
we can't just arbitrarily promote one of the
children, otherwise BST property may not be
satisfied.

 We can replace the node being deleted with its

successor to guarantee the BST property still
holds.

 Why does replacing the node with its successor
ensure the BST property holds?



BST Operations - Deletion

« FACT 1: The successor to a node with two
children is guaranteed to have 0 or 1 children.

« FACT 2: The successor of a node with a right
subtree is the node with the smallest key in the
right subtree.

« FACT 3: The node with the smallest key in a
tree is the leftmost node in the tree that does
not have a left child (i.e., the leftmost child
node).



BST Operations - Deletion

 We now know how to find the successor node
of a node with two children (it's the leftmost
child in the right subtree).

« Since the successor has 0 or 1 children, we can
easily delete it from its current position by
promoting its right child if necessary.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

