CSC148H

Lecture 6

Binary Search Trees

Motivating Binary Search Trees

- Last week we saw examples of where a tree is a more appropriate data structure than a linear structure.
- Sometimes we may use a tree structure even if a linear structure will do.
- Why?

Motivating Binary Search Trees

- For certain tasks, trees can be more efficient.
- One such task is searching.
- Suppose you have a linear structure, and you want to find an element inside this structure.
 - This means going through each element in the structure one at a time until you find the desired element.

Motivating Binary Search Trees

- We could alternatively store elements in a Binary Search Tree (BST).
- A BST is a binary tree in which
 - every node has a label (or "key")
 - every node label is
 - greater than the labels of all nodes in its left subtree
 - less than the labels of all nodes in its right subtree
- (examples on board)

Binary Search Trees

How do we search for an element in a BST?

Binary Search Trees

- Why is searching for an element in a BST more efficient than (linearly) searching for an element in a list?
- Are there any cases where searching for an element in a BST is no more efficient than (linearly) searching for an element in a list?

Height of a Binary Tree

- What is the maximum height of a binary tree with n nodes?
- What is the mininum height?
- What does a tree with minimum height (on n nodes) look like?

Minimum Height of a Binary Tree

• A minimum-height binary tree with n nodes is a binary tree whose height is no greater than any other binary tree with n nodes.

Complete Binary Tree

- A complete binary tree with n nodes is a binary tree such that every level is full, except possibly the bottom level which is filled in left to right.
- We say that a level k is full if k = 0 and the tree is non-empty; or if k > 0, level k-1 is full, and every node in level k-1 has two children.
- Terminology alert: Some sources define a complete binary tree to be one in which all levels are full, and refer to the definition above as an "almost" complete binary tree.

Determining Minimum Height

- A binary tree with height h has at most 2^{h+1}-1 nodes. (Prove by induction.) In fact, there exists a binary tree of height h having exactly 2^{h+1}-1 nodes.
- A minimum-height binary tree with height h has at least 2^h nodes. (Follows from the result above.)
- Let T be a minimum-height binary tree with n nodes and height h. By the two points above,
 2^h <= n <= 2^{h+1}-1. Thus floor(log₂n) = h.

Determining Minimum Height

 Previous slide implies that the minimum height of any binary tree on n nodes is floor(log,n)

Binary Search Trees

- If we can always ensure that a binary search tree is roughly in the shape of a minimal-height binary tree, then searching a binary tree will be much more efficient than linearly searching a list.
- You'll see more on this in later courses: "AVL Trees", "Red-Black Trees" are BSTs that are balanced.

BST Operations

- So far we've only discussed searching for an element in a BST
- What do we do once we found it?
- Right now, we can only really report whether it's found or not, but in many applications we may want to store some data with the node
- Your textbook calls the label of a node its key, and the data associated with the node its value.

BST Operations

- In general, a BST can be used for mapping keys to data values. (This is much like a Python dictionary).
- Useful operations for such a structure include:
 - has_key(key) test if a node with the given key is present in the tree
 - get(key) get data associated with the key
 - put(key, val) associate val with the given key
 - delete(key) remove a node

BST Representation

- How are we going to represent a BST?
- We can use the nodes and references representation that we discussed last week.
- But what if a BST is empty? How do we keep track of this?

BST Representation

- We use a TreeNode class to represent a node in the BST
- We use a BinarySearchTree class to represent the tree itself. This class has an attribute that points to the root TreeNode of the tree.
- We'll define operations on the BinarySearchTree class, but most of them will just delegate to operations in the TreeNode class

BST Representation

- Your textbook keeps track of the parent node of each node in order to implement their version of the delete method.
- There's a way to implement the delete method without requiring the parent node explicitly be kept track of.

BST Operations

- How do we implement get(key)?
- Implementing has_key(key) can be done by delegating to get(key) and checking if the returned value is None

BST Operations

- How do we implement put(key) (i.e., insert a node into the tree)?
- Keep in mind, we want to ensure the BST property is maintained after the node is inserted
- Put operation is similar to the get operation
 - the put operation follows the same path through the tree as a get operation
 - node is added at the end of the path

- Removing a node (the delete(key)) operation is the most complex
- Deleting a node with 0 or 1 children is easy, but a node with 2 children is more difficult
- With 0 children, the node is just deleted.
- With 1 child, the child node can just be promoted to the position of the deleted node.

- If the node being deleted has two children, then we can't just arbitrarily promote one of the children, otherwise BST property may not be satisfied.
- We can replace the node being deleted with its successor to guarantee the BST property still holds.
- Why does replacing the node with its successor ensure the BST property holds?

- FACT 1: The successor to a node with two children is guaranteed to have 0 or 1 children.
- FACT 2: The successor of a node with a right subtree is the node with the smallest key in the right subtree.
- FACT 3: The node with the smallest key in a tree is the leftmost node in the tree that does not have a left child (i.e., the leftmost child node).

- We now know how to find the successor node of a node with two children (it's the leftmost child in the right subtree).
- Since the successor has 0 or 1 children, we can easily delete it from its current position by promoting its right child if necessary.