CSC148H

Lecture 5

Trees

Motivating Trees

* A data structure is a way of organizing data

« Up until now all we have seen are linear data
structures
- stacks
- gueues

- python lists (used in the implementation of stack
and queue ADT)

- naive implementation of the priority queue ADT.

Motivating Trees

* A linear data structure organizes data in a linear
(“one after another”) fashion

* This tends to be a natural way to organize data
In certain types of applications:

- A stack can be used to keep track of a stack of
books as in assignment 1.

— A list can consist of a list of students enrolled in a
class.

Motivating Trees

|t doesn't make sense to organize certain types
of data into a linear structure.

* For example:

— directories in a file system
- people in a family tree

Tree - Definition

* A tree consists of (i) a set of nodes and (ii) a
set of edges, each of which connects two
nodes. In order for a set of nodes and a set of

edges to define a tree, they have to satisfy a
number of properties.

» Before we describe these properties, lets define
some terms that we'll be using.

Trees - Terminology

* Node: Intuitively, think of a node as a point in
the tree. It usually contains some piece of data,
known as the “key” (or label).

e Edge: Connects two nodes. The connection is
directed in the sense that the edge is
“outgoing” from one node and “incoming” into
the other node.

« Root node: The only node Iin the tree that has
no incoming edge.

» Children: Set of nodes that have incoming
edges from the same node.

Trees - Terminology

« Parent node: A node is the parent of all nodes
to which it has outgoing edges.

« Siblings: Set of nodes that share a common
parent.

» Leaf: A node that has no children (i.e., no
outgoing edges).

e Internal node: A non-leaf node.

 Path: An ordered list of nodes that are

connected by edges. (The traversal of edges
only goes from parent to child.)

Trees - Terminology

e Descendant: A node nis a descendant of some
other node p if there is a path from pto n

e Subtree: A subtree of some tree T is a tree
whose root node ris a node in T, and which
consists of all the descendants of rin T and the
edges among them.

« Length of a path: Number of edges on a path

e Branching Factor: Maximum number of children
for any node

Trees - Terminology

* Level (Depth): The level (or depth) of node n is
the number of edges on the path from the root
node to n

« Height: The maximum level of all nodes in the
free.

Tree - Definition

* A tree consists of (i) a set of nodes and (ii) a
set of edges, each of which connects two
nodes. In order for a set of nodes and a set of
edges to define a tree, they have to satisfy a
number of properties:

- One node in the tree is designated as the root node
- Each node, except the root, has exactly one parent
- There is a unique path from the root to every node

- There are no cycles — i.e, no paths that form “loops”

Tree — Definition

* A tree with a maximum branching factor of 2
(I.e., each node has a maximum of two
children) is a binary tree.

Trees

« Common operations:

- Insert a new node
- remove a node

— traverse a tree: visit the nodes in some order and
apply operations to each

— attach a subtree at a node
- remove a subtree

Representing Binary Trees

« Using list of lists:

— First element of the list contains the label of the root
node.

- Second element is the list that represents the left
subtree.

- Third element is the list that represents the right
subtree.

Representing Binary Trees

e Using nodes and references

class BinaryTree:
def __init__(self, rootOb;j):
self.key = rootObj
self.left = None
self.right = None

def insertLeft(self, newNode):
self.left = BinaryTree(newNode)
but what if self.left already exists?

Tree Traversal

e |If we “traverse a list” we access each element
in the list, possibly performing some operation
with that element.

 List traversals are simple — you either go
through a list from the first element to the last
element, or vice-versa.

» There are different ways of traversing the nodes
in a tree.

Tree Traversal

 We say that we have visited a node when we
have done “something” with it (e.g. printed its
key).

« The standard ways of traversing a binary tree
are as follows:

- preorder traversal
- inorder traversal
— postorder traversal

Tree Traversals

* Preorder: Visit the root node, do a preorder
traversal of the left subtree, and do a preorder
traversal of the right subtree

e |norder: Do an inorder traversal of the left
subtree, visit the root node, and then do an
inorder traversal of the right subtree.

 Postorder: ?7??

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

