
CSC 148H1 Summer 2008 Midterm
Test

Duration — 60 minutes
Aids allowed: none

Student Number:

Lab day:

Last Name: First Name:

Lecture Section: L0101 Instructor: R. Danek

Do not turn this page until you have received the signal to start.

(Please fill out the identification section above, write your name on the back
of the test, and read the instructions below.)

Good Luck!

This test consists of 5 questions on 10 pages (including this one). When you

receive the signal to start, please make sure that your copy is complete.

Comments are not required except where indicated, although they may help
us mark your answers. They may also get you part marks if you can’t figure
out how to write the code.
If you use any space for rough work, indicate clearly what you want marked.

1: /10

2: /10

3: / 8

4: /10

5: /10

TOTAL: /48

Total Pages = 10 Page 1 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

Question 1. [10 marks]

Why is searching for an item in a binary search tree sometimes more efficient than searching for an item
in a list? Under what conditions is searching a BST no more efficient than searching a list? Use a diagram
or two in your explanation. (Note: Your explanation should be at a high-level and contain no
more than a few sentences. Do not write any code for this question.)

Student #: Page 2 of 10 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

Question 2. [10 marks]

A casino has acquired a new slot machine that has a very nice payout scheme, at least from the perspective
of the gambler. Whenever a person puts in 1 coin, the machine pays out 1 coin. Whenever a person puts
in 3 coins, it pays out 4 coins. Whenever a person puts in n coins (for n other than 1 or 3): if n is even,
then the machine pays out the same number of coins that would have been paid out if the person had put
in 2n + 1 coins; and if n is odd, then the machine pays out 3 coins plus the same number of coins that
would have been paid out if the person had put in n − 2 coins.

Write a recursive function payout that takes n as an argument and returns the number of coins that the
slot machine will payout if n coins are put into it. Clearly point out what the base cases are in your
function.

Hint: To test if a number n is even or odd, determine n’s remainder when divided by 2. Recall that % is
the remainder operator.

Student #: Page 3 of 10 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

Question 3. [8 marks]

This question is on both this page and the next.

Assume that you have made the following definitions in a module:

class BarException(Exception):

pass

class FooException(Exception):

pass

x = 5

def g(n):

return n * 2

def f(n):

try:

def g(n):

return n * 3

x = g(n)

try:

if n == 0:

raise BarException

if n == 1:

raise FooException

print "XYZ"

except FooException:

print x

except:

print "ABC"

raise

except BarException:

print x

def k():

print x

*** PLACE CODE FROM EACH SUBQUESTION HERE ***

Question is continued on next page...

Student #: Page 4 of 10 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

For each of the following subquestions, write the output you would expect on the screen if you put the
code in the specified position above and ran the module.

Part (a) [2 marks]

f(0)

Part (b) [2 marks]

f(1)

k()

Part (c) [2 marks]

f(2)

print g(x)

Part (d) [2 marks]

f(x)

Student #: Page 5 of 10 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

Question 4. [10 marks]

Assume that A < B < C < ... < Z (as in the natural ordering of the alphabet).

Here is the order in which nodes in a particular binary search tree are visited in a postorder traversal:

A E D C J K H F

Draw the tree:

Student #: Page 6 of 10 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

Question 5. [10 marks]

This question is on both this page and the next.

In this question, assume you have access to a Queue implementation with the following class and method
definitions:

class Queue:

def __init__(self):

’’’Make a new empty queue’’’

implementation details omitted ...

def enqueue(self, o):

’’’add o to the end of the queue’’’

implementation details omitted ...

def dequeue(self):

’’’remove the front element from the queue and return it’’’

implementation details omitted ...

def front(self):

’’’return the front element from the queue’’’

implementation details omitted ...

def isEmpty(self):

’’’return True if the queue is empty, False otherwise’’’

implementation details omitted ...

def size(self):

’’’return the number of elements in the queue’’’

implementation details omitted ...

On the next page you are given a partially complete implementation of the Stack ADT. As you can see, it
doesn’t use a python list like we did in class; instead, it makes use of a Queue instance.

You must complete the implementation of the pop and size methods, obeying the following rules:

• You cannot change the push method or init method.

• You cannot use python lists or dictionaries anywhere in your code.

• You can create a new instance of the Queue class if you want.

Don’t worry about the efficiency of your implementation. In fact, to correctly implement pop while obey-
ing the given constraints, your solution will necessarily be inefficient. Also, don’t worry about throw-
ing/handling exceptions, and you can ignore the fact that the peek and isEmpty methods aren’t defined.

Student #: Page 7 of 10 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

class Stack:

def __init__(self):

’’’make a new empty stack’’’

self.container = Queue()

def push(self, value):

’’’add an element onto the top of the stack’’’

self.container.enqueue(value)

def size(self): # (2 marks)

’’’return the number of elements in the stack’’’

add your code here

def pop(self): # (8 marks)

’’’remove the top element from the stack and return it’’’

add your code here

Student #: Page 8 of 10 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

Use this page for rough work and for any answers that didn’t fit.

Student #: Page 9 of 10 cont’d. . .

CSC 148H1 Midterm Test Summer 2008

Last Name: First Name:

Page 10 of 10 End of Examination

