CSC148
Lecture 9

Quick Sort
Graphs

Quick Sort

* Recursive, like merge sort, but sorting is “in
place”. That is, additional space is not required.

 The main idea behind quicksort is contained Iin
the partition procedure. It works by choosing a
“pivot” element and

- finding the correct position of the pivot element in
the final sorted list (this is called the “split point”)

- moving elements less than the pivot before the split
point, and other elements after the split point.

Quick Sort

« Quick sort works by partitioning the list (using
the partition procedure described above), and
then recursively sorting the lists before and
after the split point.

* In the worst case, the split point can always be
skewed to one side of the list, resulting in
O(n”2) time complexity.

e On average, the time complexity of Quicksort is
O(n log n)

Quick Sort

 Examples on board

Quick Sort

 Lets look at the quick sort procedure in Wing.

Graphs

Graphs can be used to represent a number of
real-world artifacts

Intuitively, graphs consist of a number of
“nodes” (vertices) connected by lines (known as
“edges’.

Edges express a relationship between the two
nodes.

Edges may be directed, in which case the
relationship between the two nodes is
directional.

Graphs

« Edges may be undirected, in which case the
relationship between the two nodes is
symmetrical.

Graphs

* A vertex has a label, just like vertices in a tree.

* A vertex can also have a value associated with
the key. (Your textbook calls this the 'payload’).

« Graphs containing directed edges are known as
directed graphs (or 'digraphs’).

« Edges may have values assigned to them,
called “weights”. What this value expresses
depends on the graph — for example, in a graph
representing roads that connect one place to
another, the weight may be the distance.

Graphs

 More formally, a Graph G is a pair (V,E), where
V Is a set of vertices, and E is a set of edges.

« Edges are tuples (v,w), where v and w are in
the vertex set V.

Graphs

» A path in a graph is a sequence of vertices that
are connected by edges

* A simple path is a path that contains no
duplicate vertices.

* The length of a path is the number of edges in a
path. The weighted path length is the sum of
the weights of all edges in the path.

* The distance between two vertices is the length
of the shortest path between them.

Graphs

* A cycle is a path that starts and ends at the
same vertex

» A connected graph is a graph in which there is
a path between any two vertices

* A complete graph is a graph that contains every
possible edge.

« The degree of a vertex is the number of edges
incident to a vertex

Graphs

* The following is known as the 'Handshaking
Lemma': The sum of the degrees of all vertices
IS equal to twice the number of edges in the
graph.

* A corollary to this is that the number of vertices
of odd degree is even (otherwise the sum of
degrees couldn't add up to an even number).

 (In any group of people, the number of people
with an odd number of friends in the group is
even).

Representing Graphs

» Adjacency Matrix for an unweighted graph

- Tells you which vertices are “adjacent” (i.e.,
connected by an edge)

- If entry (i,)) in the matrix is 1, then there is an edge
from vertex i to vertex |. Entry (i,]) is O otherwise.

- if the graph is undirected, then the adjacency matrix
IS symmetric (i.e, its transpose equals itself).

« Adjacency Matrix for a weighted graph

- Entry (i,)) represents the weight of the edge from i to
J. If 0 Is a valid weight, another value Is needed to
represent the absence of an edge from i to |.

Representing Graphs

« Adjacency matrices can use up a lot of space:

- If a graph has |V| vertices, then the adjacency
matrix contains |V|*2 entries to represent all
possible edges that can exist in the graph.

* There's a more efficient way of representing a
graph: Adjacency list

Representing Graphs

* In an Adjacency List, we store a list of vertices,
and with each vertex we store a list of adjacent
vertices.

Breadth First Search (BFS)

enqueue start vertex into queue
while queue is not empty:
u = dequeue vertex from queue
visit u
for each (u,v) in E:
if v is not already discovered:
set v as discovered
enqueue v into queue

Depth First Search

def dfs(graph, start_vertex):
dfs_helper(graph, start_vertex, set([]))

def dfs_helper(graph, vertex, discovered):
add vertex to discovered
visit vertex

adjv = neighbours of vertex
for vertex2 in adjvertices:
if vertex2 is not in discovered set:
dfs_helper(graph, vertex2, discovered)

