CSC148H
Introduction to Computer Science
(Summer 2008)

Instructor: Robert Danek
(rdanek@cdf.toronto.edu)

Lectures: BA1220 R4-6



What Computer Science Is Not

a N

"Computer Science is no
more about computers than
astronomy is about
telescopes.”

o

Edsger W. Dijkstra




What Computer Science Is Not

PROGRAMMING = COMPUTER
SCIENCE

pui b



What is Computer Science?

* The study of problems, problem-solving, and
the solutions that come out of the problem
solving process



Steps to solving a CS problem

» Specification

— Clear, precise
descriptions

* Design

— structure your solution
carefully

- employ abstraction
* Analysis

— reason about an
algorithm's efficiency
and correctness

* Implementation

- iImplement solution In
some language

— recursion vs.
iteration?

— which data structures
to use?

e Verification
— Unit testing



How the customer explained it




How the project leader understood it




How the programmer wrote it




What the customer really needed




Steps to solving a CS problem

» Specification

- Clear, precise
descriptions

* Design

— structure your solution
carefully

- employ abstraction
* Analysis

— reason about an
algorithm's efficiency
and correctness

* Implementation

- iImplement solution In
some language

— recursion vs.
iteration?

- Clean, modular, easy
to understand code

e Verification

— Unit testing

— Write clear docs for
tests



Abstraction

* Abstraction is an integral part of problem
solving

- Ignore certain detalls to make the problem easier to
solve.

— The details still need to be dealt with
- Simplifies the process of problem solving



Abstract Data Types (ADTs)

* Fundamental computer science concept
* Abstract. no mention of the implementation

* Data Type:

1) the data being stored, and
2) the operations that can be performed on the data



Steps to solving a CS problem

* Specification * Implementation
- Clear, precise - implement solution in
descriptions some language
* Design - Clean, modular, easy

- structure your solution to understand code

carefully * Verification
- employ abstraction - Unit testing
* Analysis - Write clear docs for

~ reason about an tests

algorithm's efficiency
and correctness



The Value of Testing

an

‘Beware of bugs in t

not tried it.”

he

above code; | have
only proved it correct,

.

Donald Knuth



ADT examples from CSC108/A08H

* List

- Data: a sequence of objects, in order

— Operations: append, index into, find, ...
* Dictionary

— Data: a collection of key-value pairs

- Operations: insert pair, lookup value with key, ...
* Both ideas are abstract, since

- no mention of how data is stored in memory
- how operations are performed



Stack ADT (2.3)

* A sequence of * Operations:

Objects_ - pUSh(O) Add a new
_ item to the top of the
* Objects are removed stack

in the opposite order

: - pop() Remove and
they are inserted. POP

return top item

e Last-In-First-Out - peek() Return top
(LIFO) tem
» Like a stack of plates - isEmpty() test if stack
IS empty

* The object last

| i - sl turn # of
inserted is at the top. size() return # 0

items In stack



Uses For A Stack

* Keep track of pages visited in a browser tab

» Keep track of function calls in a running
program

* Check for balanced parentheses



Python Stack Class

* How will we store the data?
* What effect does this decision have on speed?
* Lets explore in Wing.



Queue ADT (2.4)

* A sequence of * Operations:

objects. - enqueue(o) Add o to

, the end of the queue
* Objects are removed

in the same order
they are inserted.

- dequeue() Remove
and return object at
the front of the queue

* First-In-First-Out - front() Return object
(FIFO) at the front of queue
* Like a store line up ~ isEmpty() test if

queue is empty

- size() return # of
items in queue



Uses for a Queue

* Queues are used in operating systems to keep
track of processes waiting for a turn to use the

CPU
« Simulations (e.g. Assignment 1)
* Graphical User Interfaces (GUIs)

— Queues keep track of events waiting to be handled,
like multiple button clicks



Implementation of a Queue

* Implementation of Queue using Python Lists



Priority Queue ADT

* A sequence of * Operations:

objects. - insert(o) Add o to the

. queue
* Objects are removed

" order of their - extractMin() Remove

and return object with

priority minimum value

* Likealineupina - min() Return object
bank where the with min. value
customer with largest - isEmpty() test if
bank account goes to queue is empty
the front ~ size() return # of

items in queue



In Closing ...

* We covered the following :

- Section 1.1-1.3 (What is Computer Science?)
- Section 2.3 (Stacks), 2.4 (Queues)

* You may also want to read Section 1.4 if you
need a review of Python

* Assignment 1 is now posted. It is due in two
weeks.

* Next week: More Stacks and Queues,
Exceptions, and OOA/OQD.



