Brief Announcement: Closing the Complexity Gap
Between Mutual Exclusion and FCFS Mutual Exclusion

Robert Danek
University of Toronto, Canada

rdanek@cs.toronto.edu

ABSTRACT

We consider the worst-case remote memory reference (RMR)
complexity of first-come-first-served (FCFS) mutual exclu-
sion (ME) algorithms for N asynchronous reliable processes,
that communicate only by reading and writing shared mem-
ory. We exhibit an upper bound of O(log N) RMRs for
FCFS ME, which is tight, improves on prior results, and
matches a lower bound for ME (with or without FCFS).

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms, Theory.

1. INTRODUCTION

Mutual exclusion (ME), proposed by Dijkstra, allows mul-
tiple processes to access shared hardware or software re-
sources safely. First-Come-First-Served (FCFS) ME, de-
fined by Lamport, additionally ensures that processes are
granted access to the resource in a fair order. In a FCFS ME
algorithm, a process first executes a doorway — a bounded
piece of code whose execution fixes the FCFS order. A pro-
cess then waits for its turn in the waiting room, accesses
the shared resource in the critical section (CS), and releases
the resource in the exit protocol. A single execution of all
these is a passage. Between passages, a process lives in the
non-critical section (NCS).

We measure the time complexity of a ME algorithm by
counting the number (per passage) of remote memory refer-
ences (RMRs), which are memory accesses that traverse the
processor-to-memory interconnect (e.g., cache misses).

Our main result is the first FCFS ME algorithm for N
processes that has RMR complexity O(log N), and belongs
to the class of algorithms that use read and write operations
only. Our algorithm is also adaptive to point contention (de-
noted k), which is the maximum number of processes simul-
taneously outside the NCS. That is, it has RMR complex-
ity ©(min(k,log N)), which is optimal for ME algorithms
(with or without FCFS) in the class under consideration [1,
2]. Prior algorithms either rely on stronger synchronization
primitives, lack FCF'S, or have suboptimal RMR complexity
[1, 3]. Thus, we close the RMR complexity gap between ME
and FCFS ME for the class of algorithms that only use reads
and writes.

Copyright is held by the author/owner(s).
PODC’08, August 18-21, 2008, Toronto, Ontario, Canada.
ACM 978-1-59593-989-0/08/08.

Wojciech Golab

University of Toronto, Canada
wgolab@cs.toronto.edu

2. THE FCFS ME ALGORITHM

The high-level structure of our ME algorithm is shown
below. In the doorway, a process receives a ticket from a
wait-free ticket dispenser (line 1), which behaves like a mod-
ular counter but may give identical tickets to processes that
execute it concurrently. After obtaining a ticket, the process
enters the waiting room (lines 2-3). Here it adds itself to
a priority queue (@) ordered by ticket, and then waits for
its turn to advance into the CS. After leaving the CS, the
process removes itself from the priority queue (line 5), and
then returns to the NCS.

ticket :== OBTAINTICKET(); // Doorway.
Q.INSERT((p, ticket)); // Waiting room begins.
await until my ticket is the smallest one “in use”;

CS; // The critical section.
Q.REMOVE((p, ticket));

GUbh W N

The main challenge in fleshing out the above high-level
structure is twofold: (1) how to implement OBTAINTICKET
and @ correctly using only ©(min(k,log N)) RMRs and
bounded memory; and (2) how to implement line 3.

We deal with the first challenge in a straight-forward way.
For OBTAINTICKET, we use a circular array of bits, indi-
cating which tickets are in use (i.e., held by some process
between line 1 and line 5). To locate the next free ticket,
we use a modified binary search that is adaptive to point
contention. As for ), we use a sequential implementation
protected by an auziliary lock (i.e., an existing ME algo-
rithm with the required RMR complexity).

We answer the second challenge by having each process
record its presence immediately before line 1 using a wait-
free set-like data structure. To determine if it has the small-
est ticket at line 3, a process checks whether it is the head
of ) and whether the set-like data structure is empty, in-
dicating that no process with a potentially smaller ticket is
executing between line 1 and line 2.

3. REFERENCES

[1] J. Anderson, Y.-J. Kim, and T. Herman.
Shared-memory mutual exclusion: Major research
trends since 1986. Distributed Computing, 2002.

[2] H. Attiya, D. Hendler, and P. Woelfel. Tight RMR
lower bounds for mutual exclusion and other problems.
In Proc. STOC, 2008.

[3] G. Taubenfeld. The black-white bakery algorithm and
related bounded-space, adaptive, local-spinning and
FIFO algorithms. In Proc. DISC, pages 56—70, 2004.



