
Brief Announcement: Local-Spin Algorithms for

Abortable Mutual Exclusion and Related

Problems

Robert Danek and Hyonho Lee

Department of Computer Science
University of Toronto

{rdanek,hlee}@cs.toronto.edu

Introduction. A mutual exclusion (ME) algorithm consists of a trying proto-
col (TP) and exit protocol (EP) that surround a critical section (CS) and satisfy
the following properties: mutual exclusion: at most one process is allowed to
use the CS at a given time; lockout freedom: any process that enters the TP
eventually enters the CS; and bounded exit: a process can complete the EP
in a bounded number of its own steps. A First-Come-First-Served (FCFS) ME
algorithm [1] additionally requires processes to enter the CS in roughly the order
in which they start the TP. Once a process has started executing the TP of a
ME algorithm, it has committed itself to entering the CS, since the correctness
of the algorithm may depend on every process properly completing its TP and
EP.

Abortable ME [2, 3] is a variant of ME in which a process may change its mind
about entering the CS, e.g., because it has been waiting too long. A process can
withdraw its request by performing a bounded section of code, called an abort
protocol (AP).

We discuss novel algorithms for abortable ME and FCFS abortable ME.
These algorithms are local-spin, i.e., they access only local variables while waiting
and perform only a bounded number of remote memory references (RMRs) in the
TP, EP and AP. Using these algorithms, we obtain new local-spin algorithms
for two other additional problems: group mutual exclusion (GME) [4] and k-
exclusion [5].

Summary of Results. All our algorithms use only atomic reads and writes.
We call these RW algorithms. Our main result is the first RW local-spin abortable
ME algorithm. It has O(log N) RMR complexity per operation and O(N log N)
(total) space complexity for N processes. It is a surprisingly simple modification
of the RW local-spin ME algorithm of Yang and Anderson [6]: we allow a process
waiting in an unbounded loop in the TP to abort by executing the EP.

We also have a transformation that converts any abortable ME algorithm
that has O(T ) RMR complexity and O(S) space complexity to an FCFS abortable
ME algorithm that has O(N + T ) RMR complexity and O(S + N2) space com-
plexity. Given an abortable ME algorithm, we add code to the beginning of its
TP: a process p builds a “predecessor” set, which includes all processes that
must enter the CS before it. Process p then waits for its predecessors to finish
the CS, during which time it can abort. We also add code to the end of the EP



and AP: p signals to other processes that may have p in their predecessor set.
This transformation combined with the modified Yang and Anderson algorithm
yields the first RW local-spin FCFS abortable ME algorithm. It has O(N) RMR
complexity and O(N2) space complexity. This also uses only bounded registers,
so it yields a positive solution to an open problem mentioned by Jayanti [3].

Danek and Hadzilacos [7] presented a number of transformations using only
reads and writes that convert any FCFS abortable ME algorithm that has O(T )
RMR complexity and O(S) space complexity into a local-spin GME algorithm
that has O(N +T ) RMR complexity and O(S +N2) space complexity. Together
with our FCFS abortable algorithm, this leads to the first RW local-spin GME
algorithm. It has O(N) RMR complexity and O(N2) space complexity.

Lastly, we convert any abortable ME algorithm that has O(T ) RMR com-
plexity and O(S) space complexity to a k-exclusion algorithm that has O(k · T )
RMR complexity and O(k · S) space complexity, but is not fault-tolerant. The
transformation uses k instances of an abortable ME algorithm.

When a process enters the TP of the k-exclusion algorithm, it performs all k

instances of the abortable mutual exclusion algorithm concurrently (for example,
repeatedly performing one step of each in round-robin order) until it enters the
CS of one of the instances. When the process enters the CS of the jth abortable
ME algorithm, it finishes or aborts its execution of all other instances before
entering the CS of the k-exclusion algorithm. When the process finishes the
CS of the k-exclusion algorithm, it performs the EP of the jth abortable ME
algorithm.

Applied to our abortable ME algorithm, this yields the first RW local-spin
k-exclusion algorithm. It has O(k · log N) RMR complexity.

Acknowledgments. We thank Faith Ellen and Vassos Hadzilacos for their
numerous helpful suggestions during the writing of this paper.

References

1. Lamport, L.: A new Solution of Dijkstra’s Concurrent Programming Problem. Com-
munications of the ACM 17(8) (August 1974) 453–455

2. Scott, M.L.: Non-blocking Timeout in Scalable Queue-based Spin Locks. In: The
21st Annual Symposium on Principles of Distributed Computing. (July 2002)

3. Jayanti, P.: Adaptive and Efficient Abortable Mutual Exclusion. In: Proceedings of
the 22nd Annual ACM Symposium on Principles of Distributed Computing. (July
2003)

4. Joung, Y.J.: Asynchronous group mutual exclusion. Distributed Computing 13(4)
(2000) 189–206

5. Anderson, J.H., Moir, M.: Using local-spin k-exclusion algorithms to improve wait-
free object implementations. Distributed Computing 11(1) (1997) 1–20

6. Yang, J.H., Anderson, J.H.: A Fast, Scalable Mutual Exclusion Algorithm. Dis-
tributed Computing 9(1) (August 1995) 51–60

7. Danek, R., Hadzilacos, V.: Local-spin group mutual exclusion algorithms. In: DISC.
(2004) 71–85


