Week 6 Review

FSM Example

- A data bus, labeled A_BUS, is used to create a shared data routing path between four 4-bit registers, M, A, R and Y.
 - 1) How would you implement this data bus using the combinational/sequential devices that you have learned so far?
 - 2) What control signals are needed in your design (i.e. clock)?

Using multiplexors

Datapath Unit (DPU or DU)Control Unit

Data Bus Example

The following process needs to be implemented:

• S1:
$$A \leftarrow Y$$

• S2: $R \leftarrow M$

• S₃: $Y \leftarrow R$, $M \leftarrow R$

Control Unit (CU) and Datapath Unit (DU)

Data Bus Example

RTL operations	Control Vector [$p_1 p_0$ ldM ldA ldR ldY]
So:M ← A	
S1:A ← Y	
S2:R ← M	
S ₃ :Y \leftarrow R, M \leftarrow R ()/goto So.	

Data Bus Example

RTL operations	Co [p ₁	ntrc p _o	ol Vec IdM	tor IdA	ldR	ldY]]
So:M ← A	0	1	1	0	0	0	(18Hex)
S1:A ←Y	1	1	0	1	0	0	(34Hex)
S2:R ← M	0	0	0	0	1	0	(o2Hex)
S ₃ :Y \leftarrow R, M \leftarrow R ()/goto So.	1	0	1	0	0	1	(29Hex)

Quiz 5

Question 1: Traffic Light

Complete the state table for the FSM represented by the following state diagram:

Question 1

Output, Color changer (CC):

- oo => Red color,
- o1 => Green color,
- IO => Yellow color

Current	t	Next	CC
state		State	
Red	0	Red	00
Red	1	Green	01
Green	0	Green	01
Green	1	Yellow	10
Yellow	0	Yellow	10
Yellow	1	Red	00

Question 2:

- What is the equation for F1*?
- Hint: use CC as your state variable.

F1* = F0.t + F1.t'

Question 3:

What is the equation for Fo*?

Fo* = Fo.t' + F1'.Fo'.t

Question 4:

Draw your FSM circuit diagram?

Question 5:Pedestrian Crossing

The pedestrian crossing is a Mealy machine and is an add-on to the traffic light. Other than the first input timer (t), it has a secondary input, p which is the signal generated when a pedestrian presses the button indicating they would like to cross the road. This produces an output Z which will be used to speed-up the timer that will cause the traffic light to turn Red for cars and allow the pedestrians to 'Go'. 1X/?

Question 6:

What is the equation for Fo* for the pedestrian signal?

Fo* = Fo't + Fot'

Question 7:

Draw your FSM circuit diagram?

