Week 2 \& 3 Review

Review of past lecture:

- Last week we learned:
- Using logic gates
- Combinational circuits
- Circuit reduction
- Karnaugh maps
- Logical Devices
- Multiplexer
- Decoder
- Adder/Subtractor
- Comparator

Gate Conversions

Quiz 3

Question 1

- How can you implement a NOT gate from a 2-input NAND gate?

Question 2 - Minterms

- Write Y in SOM (Sum Of Minterms) form.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Y}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{array}{r}
Y=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \mathrm{C}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}+ \\
\mathrm{A} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}
\end{array}
$$

$$
Y=m_{1}+m_{2}+m_{4}+m_{7}
$$

Question 3 - Maxterms

- Write Y in POM (Product Of Maxterms) form.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Y}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
Y= & \overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C} \cdot \overline{\mathrm{~A}}+\mathrm{B}+\overline{\mathrm{C}} . \\
\mathrm{A}+\overline{\mathrm{B}}+\overline{\mathrm{C}} \quad & \mathrm{~A}+\mathrm{B}+\mathrm{C}
\end{aligned}
$$

$$
Y=M_{0} \cdot M_{3} \cdot M_{5} \cdot M_{6}
$$

Question 4

Given the Karnaugh map on the right for an output called Y, what is the equation for the most reduced form of this circuit.

Question 5

Given the Karnaugh map on the right for an output called Y:
a. Gate Cost: 1
b. Gate Cost (including NOTs)

Practice Question

- Given the minterms below, can you fill in the truth table on the right?

$$
\begin{gathered}
\mathrm{Y}=\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{7}+\mathrm{m}_{9} \\
+\mathrm{m}_{12}+\mathrm{m}_{14}
\end{gathered}
$$

\mathbf{A}	B	C	D	\mathbf{Y}
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Practice Question

- Given the minterms below, can you fill in the truth table on the right?

$$
\begin{gathered}
\mathrm{Y}=\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{7}+\mathrm{m}_{9} \\
+\mathrm{m}_{12}+\mathrm{m}_{14}
\end{gathered}
$$

\mathbf{A}	\mathbf{B}	C	D	\mathbf{Y}
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0
				0

Question 6-8

6. How do you write the number 78 as an 8 -bit binary number?

$$
\begin{array}{|r|r|r|r|r|r|r|r|}
\hline 128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\hline \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
$$

7. What is the two's complement of 01101101 ?

8. What is the sum of 01101101 and 01101101 ?

$$
11011010
$$

Question 9

- What groupings are in the K-map on the right?

	$\overline{\mathbf{C}} \cdot \overline{\mathbf{D}}$	$\overline{\mathbf{C}} \cdot \mathbf{D}$	$\mathbf{C} \cdot \mathbf{D}$	$\mathbf{C} \cdot \overline{\mathbf{D}}$
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	1	1	X	1
$\mathbf{A} \cdot \overline{\mathbf{B}}$	X	0	X	1
$\mathbf{A} \cdot \mathbf{B}$	1	X	X	1
$\overline{\mathbf{A}} \cdot \mathbf{B}$	1	X	0	X

- What logic equations do these groupings represent?

$$
\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}+\overline{\mathrm{D}}
$$

Question 10

Which Row is the forbidden state for this circuit?

Row	$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	\mathbf{Q}_{T}	$\overline{\mathbf{Q}}_{\mathrm{T}}$	$\mathbf{Q}_{\mathrm{T}+1}$	$\overline{\mathbf{Q}}_{\mathrm{T}+1}$
\mathbf{A}	0	0	X	X	1	1
\mathbf{B}	0	1	X	X	1	0
\mathbf{C}	1	0	X	X	0	1
D	1	1	0	1	0	1
\mathbf{E}	1	1	1	0	1	0

Row A

Group Questions

Question 1

What is the Sum of Minterms equation for the circuit shown below:

Question 2

- How would you implement the $\mathrm{A}==\mathrm{B}$ output of the 2-bit comparator below out of 1-bit comparators and a minimal number of gates?

Question 2 - Answer

- The implementation of the $A==B$ signal:

Question 3

- How would you implement the A>B output of the 2-bit comparator below out of 1-bit comparators and a minimal number of gates?

