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Abstract

A simple and general-purpose system to recognize biological particles is presented.
It is composed of four stages. First (if necessary) promising locations in the image
are detected and small regions containing interesting samples are extracted using
a feature finder. Second, differential invariants of the brightness are computed at
multiple scales of resolution. Third, after point-wise nonlinear mappings to a higher
dimensional feature space, this information is averaged over the whole region thus
producing a vector of features for each sample that is invariant with respect to
rotation and translation. Fourth, each sample is classified using a classifier obtained
from a mixture-of-Gaussians generative model.

This system was developed to classify 12 categories of particles found in human
urine; it achieves a 93.2% correct classification rate in this application. It was sub-
sequently trained and tested on a challenging set of images of airborne pollen grains
where it achieved an 83% correct classification rate for the 3 categories found dur-
ing one month of observation. Pollen classification is challenging even for human
experts and this performance is considered good.

Key words: biological particles, feature, non-linearity, recognition, cells, pollen,
mixture of Gaussians (MoG)



1 Introduction

Microscopic image analysis is used in many fields of technology and physics.
In a typical application the input image may have a resolution of 1024x1024
pixels, while objects of interest have a resolution of just 50x50 pixels. In all
these applications, detection and classification are difficult because of poor
resolution and strong variability of objects of interest, and because the back-
ground can be very noisy and highly variable. In this work, we aim to develop a
general recognition system that is able to deal with the variability between the
classes and also with the variability within each class. Moreover, our approach
is segmentation free and allows easy addition of new classes.

Sec. 3 describes the two datasets used to train and test the system. The first is
a collection of image patches centered around corpuscles found in microscopic
urinalysis. These particles can be classified into 12 categories. The second
dataset is a collection of airborne pollen images. In this dataset a recogni-
tion system has first to detect pollen grains, then, to classify them into their
correct genus. We have 27 different pollen categories to detect, only the 8
most numerous classes were then used to test the classifier. We considered
this second dataset not only because automatic pollen recognition is still an
unsolved problem and interesting application, but also because we wanted to
assess the ability of the classifier to adapt to other classes of particles. In sec.
4, we present a detector that is able to extract points of interest by looking at
the differences of Gaussian images, and then to generate patches which might
contain a particle of interest. In sec. 5, we describe the key point of the sys-
tem: a new set of very informative and straightforward features based on the
local invariants defined by Mohr and Schmid (1997) [4]. A simple processing
step then allows us to extract from the input image most of the information
contained in the particle in the foreground, so that no segmentation is needed.
Sec. 6 gives an overview at the mixture of Gaussians classifier we have used
in our experiments.

In both datasets, we have to classify images with poor resolution; in addition,
we are considering many different classes of biological particles that sometimes
look very similar to each other. In addition to improving and automating the
microscopic analysis of urine particles and the recognition of airborne pollen
grains, the system we have developed can be applied to many other kinds
of biological particles found in microscopic analysis. Indeed, this system has
shown very good performance on a large variety of corpuscles as reported by
several experiments in sec. 7, and also by other recent experiments done on
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another set of images: a collection of small underwater animals 1 .

2 Previous Work

The approach formulated by Dahmen et al. (2000) [5] for the classification
of red blood cells is general and segmentation-free, as is the system we are
describing in this paper. They aim to classify three different kinds of red
blood cells (namely, stomatocyte, echinocyte, discocyte) in a dataset of gray-
scale images with resolution 128x128 pixels. Their idea of extracting features
that are invariant with respect to shift, rotation and scale is powerful because
it allows us to cluster cells that are found in different positions, orientations
and scales. Given an image, they extract Fourier Mellin based features [7]
and then model the distribution of the observed training data using Gaussian
mixture densities. Using these models they are able to achieve a test error rate
of about 15%.

Several research works about pollen recognition were done using scanning elec-
tron microscope (SEM) and some good results have been achieved (Vezey and
Skvarla, 1990 [16]; Langford et al., (1990) [9]), but SEM analysis is expensive,
slow and absolutely not suitable for a real-time application.
France et al. (1997) [6] describe two methods of pollen identification in images
taken by optical microscopy. This work is one of the first attempts to automate
the process of pollen identification using the optical microscope. Using a collec-
tion of about 900 patches containing pollen grains and 900 patches containing
particles that are not pollen, they aim to identify the pollen grains. Their best
approach uses the so-called “Paradise Network”. Several small templates able
to identify features in the object are generated, then linked together to form
a certain number of patterns. This composition is repeated in testing, and
the system looks for the best match between the assembled pattern and the
pollen and non-pollen patterns. The network is able to recognize nearly 79.1%
of pollen as pollen, 4% of the debris is also classified as pollen.

Ronneberger et al. (2000) [14] acquire 3D volume data for each pollen grain
with a fluorescence microscope. They have a dataset of 350 samples of pollen
taken directly from trees (i.e. samples with very little variation in appearance),
and belonging to 26 categories. They extract features that are 3D invariant
and use a Support Vector Machine (SVM) to classify them. Testing one image
at a time they achieve an error rate of about 8%. Note that this dataset is too
small to get a reliable result, that they are using “pure” samples, and that 3D

1 Edgington, D.R., Kerkez, I., Cline, D.E., Ranzato, M., Perona, P. 2006. “De-
tecting, tracking and classifying animals in underwater video”. IEEE International
Conference on Computer Vision and Pattern Recognition, demonstration, New York
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analysis is not suitable for a real-time application.

Luo et al. (2004) [12] have developed a plankton recognition system using a
dataset of images which has many similarities to ours. Their particles do not
have clear contours and might be partially occluded and there are also many
unidentifiable objects that must be discarded. First, they extract features by
considering invariant moments, granulometric measurements and domain spe-
cific features. Secondly, they apply a feature selection procedure that reduces
the number of features and happens to keep almost all the domain specific
features. Finally, they classify with an SVM to obtain an overall average accu-
racy of 76%, but with a high error rate on the unidentifiable particles (about
42%).

Uebele et al. (1995) [15] use a neural-network-based fuzzy classifier on a
dataset of blood cells. After extracting 13 features from each sample, they
train a three-layered neural network. Then, they used the trained weights to
cluster the feature space into non-overlapping regions, which reduces the error
rate by 1%. More recently, a multi-layer convolutional neural network (LeCun
et al., 1998 [10]) has been trained successfully to detect faces and to recognize
objects in natural and biological images (Ning et al., 2005 [13]). This tech-
nique is very attractive because it employs end-to-end learning which makes
unnecessary any hand-made tuning and any feature selection activity, but it
requires a very large dataset to estimate its internal parameters.

3 Datasets

Our first dataset is a collection of particles found in microscopic urinalysis.
Because of the technique used to acquire images in urinalysis, and the low
concentration of particles in the specimen, the only challenging task in this
application is classification. Thus the images in this dataset are already small
image patches centered around a corpuscle. Some of these samples are shown
in fig. 1. They are (columns from left to right): bacteria, white blood cell
clumps, yeasts, crystals, hyaline casts, pathological casts, non squamous ep-
ithelial cells, red blood cells, sperm, squamous epithelial cells, white blood
cells and mucus. All categories have 1000 gray-level images with the excep-
tion of mucus (546 samples) and pathological casts (860 samples). The size
is variable, and goes from 36x36 to 250x250 pixels at 0.68µm/pix. As shown
in fig. 1, there can be a marked variability in shape and texture among items
belonging to the same category, but also a similarity among cells belonging to
different classes.
During the tuning stage we took 470 images per class to estimate the param-
eters of the system and validated on 30 images. The final test was performed
taking 90% of the images in each class as training images and the remaining
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ones as test images with random extraction. In each of these training sets, we
included the images used in the tuning stage.

We developed our classifier using the urine dataset and then tested our system
on a completely different dataset of particles: a collection of airborne pollen
images. An example of 4 images belonging to this dataset is shown in fig. 2.
This dataset has 1429 images containing 3686 pollen grains belonging to 27
species. Images have a resolution of 1024x1280 pixels with 0.5µm/pix. As you
can see in fig. 2, there can be images with a high density of particles (upper left
corner), with a low density of particles (upper right corner), with big objects
inside (lower left corner) and with bubbles of glue (lower right corner). These
images are acquired using an optical microscope to analyze a tape collecting
samples from the most standard and widely used air sampler 2 . In order to
build a labeled dataset, we developed a GUI to enable human operators to
manually collect a large training set. Using this software, we built a reference
list which stores for each image like those in fig. 2 the position and the genus
of each pollen particle identified by some expert. Given this information, we
derived a dataset of patches centered on pollen particles. Fig. 3 shows some
samples belonging to the most numerous pollen classes. They are (columns
from left to right): alder (416 samples), ash (329 samples), elm (522 samples),
mulberry (111 samples), oak (413 samples), olive (326 samples), jacaranda
(282 samples) and pine (705 samples). Only these 8 most numerous categories
will be considered in the classification experiments reported in sec. 7.2. On
the pollen dataset we have tested the whole recognition system, detector and
classifier. Detection on this dataset (see fig. 2) is very challenging because
pollen grains are rare in images and the background is highly variable. A
segmentation-based approach has never given good results. In addition, classi-
fication is difficult because of the natural variability of pollen grains belonging
to the same category and the smooth transition in appearance across items
belonging to different classes (see fig. 3).
Because of the shortage of available samples in this dataset of patches, we
did not consider a validation set. In the classification experiments described
in sec. 7.2, tuning is done by randomly taking 10% of the images for testing.
The final test is an average of 100 experiments in each of which 10% of the
images are randomly extracted to build the test dataset.

4 Detection

Detection is the first stage of a recognition system. Given an input image
with a lot of particles, it aims to find key points which have at least a little
probability of being a particle of interest. Once one of these points is detected,

2 This air sampler is called a Burkard 7-day volumetric spore trap.
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BACT. WBC CL. YSTS CL. CRYST. HYAL NHYAL NSE RBC SPERM. SQEP. WBC. MUC. 

Fig. 1. Urine dataset: samples belonging to the twelve categories. The resolution is
variable (from 36x36 up to 250x250) but in this figure, all the images have been
rescaled to fit the grid.

Fig. 2. Examples of images in the pollen dataset; this dataset has 1429 images with
3686 pollen grains belonging to 27 species. In a typical image, only two or three
pollen grains can be found while all the other particles are dust. The resolution is
1024x1280 pixels.

a patch is centered on it, and then it is passed to the classifier in the next stage.
It is extremely important to detect all the objects of interest especially when
they are rarely found in images and their number is low, as typically happens
in pollen detection. Though we only need to detect corpuscles in images of
the pollen dataset, these are so variable in terms of particle density and shape
that a general-purpose system has to be developed.

Our detector is based on a filtering approach (Lowe 1999 [11]). The input
image is converted in gray level values. It is blurred and sampled at two
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Fig. 3. Examples of pollen patches extracted by some expert from images like those
of fig. 2. Each column shows examples belonging to the same category, (columns from
left to right): alder, ash, elm, mulberry, oak, olive, jacaranda and pine. These samples
are taken from the 8 most numerous categories and have an average resolution of
50x50 pixels; these images are rescaled to fit the grid.

different frequencies, F1 and F2. In order to avoid artifacts near the image
border, we normalize the background brightness to zero 3 . We apply to both
sampled images a filtering stage, and for both images we compute a difference
of Gaussians (Lowe 1999 [11]). A set of interest points is extracted looking
at the extrema of the two previously found images. In this way, we focus on
particles that are approximately round and within a certain size.
Next, we remove points that are too close to the image border, and for the
remaining ones we create a proper bounding box (see fig. 4). In order to do
this, we estimate 8 points on the edge of the particle near the interest point;
then, we take that circle passing through 3 of these points and minimizing a
fitting error. This is the sum of the distances of the 3 closest points (among
the remaining 5) to the circumference. This circle yields a square bounding
box whose side and centroid are the diameter and center of the circumference,
respectively. The fitting error in this circumference estimation is then used to
choose which patch to discard in the case of two partially overlapping bounding
boxes. After removing those patches that are too small or that overlap too
much with other patches, and those patches whose average brightness is too
high (because of bubbles of glue, see bottom right picture in fig. 2), we have

3 The estimate of the background brightness is given by the peak of the histogram
of all the image pixel values.
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a set of patches that might contain a particle of interest.

Fig. 4. During detection (1) an interest point is found inside each particle (magenta
dot), (2) 8 points are estimated on the edge of the particle (red and green dots), (3)
a circle passing through 3 of these points (red dots) and minimizing a fitting error
is computed, and (4) a bounding box is determined by taking diameter and center
of the circumference as side and centroid of the box.

5 Feature extraction

In order to recognize an object in an image, it must be represented by some
kind of features that should express the characteristics and the information
contained in the image. These features should be invariant with respect to
shift and rotation of the particle, and should be robust against small changes
in scale as well. In this way, we are able to cluster images belonging to a certain
class because we acquire the same features independent of the position and
orientation of the cell. We derived our features from the “local jets” originally
studied by Koenderink and Van Doorn (1987) [8], and the invariants as defined
by Mohr and Schmid (1997) [4].

Let I(x, y) be an image with spatial coordinates x and y. Given I(x, y) we can
compute a set of local invariant descriptors with respect to shift and rotation
by applying kernels Kj as described by Koenderink and Van Doorn (1987) [8].
For example, the first invariant is the local average luminance, the second one
is the square of the gradient magnitude, and the fourth one is the Laplacian.
In this work, the set of invariant features we consider is limited to the first 9,
which are combinations up to third order derivatives of the image. Moreover,
these 9 invariants are computed at different scales. At each stage a blurred
image with a Gaussian kernel Gσi is considered; the width of the kernel is
σ2

i ∈ {0, 1/2, 1, 2}.
Each pixel in the image has an associated vector with 9× 4 = 36 components
that are given by

Fi,j(x, y) = I ∗ Gσi
∗ Kj(x, y), with i ∈ {0, 1, 2, 3}, j ∈ {0 · · ·8} (1)
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Let mbg be the mean of Fi,j(x, y) over all the (x, y) that fall in the 10 pixel-wide
frame around the image-patch border (i.e. we are estimating the background
brightness of component i, j). We define the non-linear functions fk as follows:

f1(z) =











0 if z < mbg positive part

z − mbg if z ≥ mbg

f2(z) =











z − mbg if z < mbg negative part

0 if z ≥ mbg

(2)

f3(z) = |z − mbg| + mbg absolute value

Thus, we define a new pixel feature as:

Hi,j,k(x, y) = fk(I ∗ Gσi
∗ Kj(x, y)) (3)

with i ∈ {0, 1, 2, 3}, j ∈ {0 · · ·8} and k ∈ {1, 2, 3}. Each pixel has a vector
with 9 × 3 × 4 = 108 components.
Finally, for each (i, j, k) in Hi,j,k we thus average all the corresponding non-
zero pixel values in the image, and we construct a single image feature vector
with 108 components. This feature vector is invariant to shift and rotation of
the cell, is scale-invariant because of the average operation, and is robust with
respect to changes in the size of the patch centered around the particle because
we exclude from the mean those values that are at zero. Most importantly, it is
computed without any segmentation of the cell. To summarize, the detection
algorithm described in sec. 4 extracts a square bounding box around a particle,
and then an invariant feature vector is computed without segmenting the
particle from the background of the patch.

We apply the non-linearity in eq. (2) (represented on the right panel of fig. 5)
because we have found experimentally that this produces a dramatic decrease
in the error rate when compared with a system using just an average of the
features defined in eq. (1); the error rate is almost halved. Other non-linearities
have been tested (see fig. 5), but the non-linearity we have introduced in eq. (2)
achieves the best performance while keeping the system very simple.

6 Classification

Given a patch with one centered object, a feature vector is extracted from
the image. In training, the system learns how to distinguish among features of
images belonging to different categories. In the test phase, a decision is made
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Fig. 5. Non-linearities tested: non-linearity I performs a linear and quadratic map-
ping resetting to zero those values around the background mean; non-linearity II
aims to separate the low, medium and high ranges of values; non-linearity III is a
simplification of non-linearity II. The second and the third non-linearities give the
best results; we have chosen the last one.

according to the test image feature. If the object in the image is considered a
particle of interest, then its class is also identified; otherwise, it is discarded
because the feature does not match any training model.

We use a Bayesian classifier that models the training data as a mixture of
Gaussians (MoG) (Bishop 2000 [3]). If the number of categories is K, then we
have to estimate K MoGs. At the end of training, we get for each category the
class-conditional distribution f(x | Cj), for j = 1...K. The estimation is done
by applying the expectation maximization (EM) algorithm (Bishop 2000 [3]).
An important property of mixture models is that they can approximate any
continuous probability density function to arbitrary accuracy with a proper
choice of number of components and parameters of the model.

Given a test image, we compute its feature vector x. Then, we apply Bayes’
rule: we want to pick the class that maximizes the probability P [Ck | x] of
the class Ck given the test data x. Applying the extension of Bayes’ rule to
continuous conditions and assuming equal distribution for the class probabil-
ities, we need only to find the class that maximizes f(x | Ck), where f is the
probability density function learned during the training stage.

Note that we need to decrease the feature space dimensionality before esti-
mating the MoGs, since the number of parameters in the model grows very
quickly with the dimension of the feature space and we have available only
a limited number of training samples. Particularly, given the whole set of
training-feature vectors we compute Fisher’s Linear Discriminants (Bishop
2000 [3]). We project both the training and the test data along these direc-
tions in order to decrease the dimensionality of the feature space from 108 to
a certain D. This parameter is found by a cross-validation procedure during
the training phase.

Note that we are presenting the simplest classifier that is able to give a good
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performance. Other classifiers have been tried. Slightly better performance
can be attained using this classifier as basic weak learner in the AdaBoost
algorithm and by classifying with SVM. However, the improvement amounts to
only a fraction of percent in the error rate, while the simple Bayesian classifier
allows easy addition of new categories by estimating a MoG for the new class
independently from the others. Thus, we will refer only to the mixture of
Gaussians classifier in the next section.

7 Experiments

7.1 Detection

Detection is performed only on images of the pollen dataset (see fig. 2). We
evaluate the performance by measuring how well our automatic detector agrees
with the set of reference labels. A detection occurs if the algorithm indicates
the presence of an object at a location where a pollen exists according to the
reference list. Similarly, a false alarm occurs if the algorithm indicates the
presence of an object at a location where no pollen exists according to the
reference list. We say that there is a match between the detector box and the
expert’s one, if

√

(xc1 − xc2)2 + (yc1 − yc2)2 ≤ α

√

A1 + A2

2
(4)

where xci, yci are the coordinates of the box centroid, Ai is the area of the box
and α is a parameter to be chosen. In our experiments, we have chosen α equal
to 1/

√
2. The overall performance can be evaluated computing the recall and

the precision. The former is the percentage of detected pollen grains when
compared to the pollen particles labeled by the experts. The latter is the
ratio of detected pollen grains over the total number of detected particles.
After tuning the system in order to find good values for the sub-sampling
frequencies (8 and 8

√
2) and for the variance of the Gaussian kernel (

√
2), we

ran the detector on all the images of the dataset. We achieved a recall equal to
93.9% and a precision equal to 8.6%, that is, we are able to find a pollen with
a probability of 0.93 and for each pollen grain another 10 particles that are not
pollen are detected. This is a good performance because we are dealing with
a highly variable background and with many other particles in each image.
Even an expert has to focus his attention on about 10 points before finding a
pollen grain in an image. Such a high number of false alarms is not a problem
as long as we are able to make a good classification of these particles (see next
section).
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Since we aim to assess the performance of the whole pollen recognition sys-
tem, that is, detection followed by classification, we have built a dataset with
these automatically detected patches in order to train and test the classifier.
For this reason, we have gone through this dataset to remove those patches
having an incorrect bounding box. It is possible to have a good overlap with
the expert’s patch even if the particle is not properly centered in the region
of interest because of dust or other particles around it. Fig. 6 shows examples
of “good” and “bad” patches belonging to the alder category. If we consider
only the “good” patches, the overall percentage of detection decreases to 83%,
but then we are able to perform a meaningful classification on those extracted
images.
Note that this technique is quite fast: the analysis of one image of size 1024x1280
pixels takes 6 seconds on a 2.5GHz Pentium processor computer (code in Mat-
lab).

GOOD PATCHES 

BAD PATCHES 

Fig. 6. Examples of 90 patches of alder pollen extracted by our detector. The first
7 rows show examples of good bounding boxes. The last 2 rows show samples that
were removed from the set because they were incorrectly centered in their bounding
box. Problems usually arise when there is dust attached to the pollen or when pollen
grains are grouped in a single cluster. 93% of pollen grains are detected, and 83%
of pollen particles are detected and correctly assigned to a region of interest. Note
that images have been rescaled to a common resolution in order to fit the grid.

7.2 Classification

The classifier needs to be tuned with respect to the number of feature-space
dimensions, the number of components in the mixture and the structure of
the covariance matrix of the Gaussians in the mixture. Thus, we ran many
experiments varying one parameter at a time, and kept that combination of
values that gave the lowest error rate. In order to estimate parameters of the
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MoGs by EM algorithm, we used some functions of the NETLAB package for
MATLAB [1]. Since the EM algorithm needs a random initialization, we also
ran many experiments varying only the state of the random number generator
in order to find the best values.

We first considered the urine dataset and took 500 images per class for the
tuning stage. The best results were achieved using 4 full covariance Gaussians
in a 12 dimensional feature space in each mixture. The test was performed
taking 90% of the images in each class as training images and the remaining
ones as test images with random extraction. The average results of 10 exper-
iments is shown in fig. 7 in the form of a confusion matrix; the error rate on
these 12 categories is equal to 6.8%.

In order to assess whether the system is able to classify particles with a differ-
ent statistics, we applied the classifier to the dataset of pollen grain patches.
Let us consider first the dataset of pollen patches extracted by experts (see
fig. 3). Tuning is done by randomly taking 10% of the images for testing. The
result of this stage is shown in tab. 1. To assess the classification performance,
in fig. 8 we show the average confusion matrix of 100 experiments; the error
rate is 21.8%. Each time we have randomly extracted from each class 10% of
the images for test purposes. When the same experiment was done using the
patches containing pollen grains that were found by the detection system we
achieved an error rate of 23.2%.

In order to assess the overall performance of the pollen recognition system,
we will need to combine the detector and the classifier. Since we train the
classifier separately from the detector, however, we feed the classifier not only
with the 8 most numerous pollen categories, but also with the same 10:1 ratio
of false alarms to genuine particles that the detector will provide. We have
found experimentally that it is better to model the false alarm class and,
given its huge number of available samples, we can use a more complex model
for it. Moreover, we put a threshold on the estimated probability of the class
given the input data. If there is low confidence, we do not make a decision and
instead assign the sample to an “unknown” category, UNK in the graphical
representation of the confusion matrices shown in fig. 9 and fig. 10. Of course,
this unknown class can be merged with the false alarm class; for this reason, we
assume the system is correct when it assigns a false alarm patch either to the
false alarm category or to the unknown class (in the following experiments the
error rate is computed differently in order to deal with these considerations).
The tuning stage proceeds as in the previous experiments and it is summarized
in tab. 1. The average performance on 100 experiments is shown in fig. 9.

Note that in any practical application of airborne pollen recognition, it is use-
ful to know what types occur together at various times of the year in the
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geographic area of interest. For example, since we know that only ash, alder
and pine pollen grains are commonly found in January in this area [2], we can
restrict the pollen categories to these three. Taking 10 false alarm patches for
each of pollen grain, and proceeding with an analogous tuning (see tab. 1), we
have achieved an error rate of about 17% as shown in fig. 10.
Note that 20ms are required to analyze a particle on a 2.5GHz Pentium pro-
cessor computer (code in Matlab).

We conclude this section reporting classification results on the urine dataset
using some methods referenced in sec. 2. The same mixture of Gaussians
classifier has been trained on a different set of features: the Fourier-Mellin
based features [7] used by Dahmen et al. (2000) [5]. These features are the
amplitude spectrum of the image Fourier transform computed in a log-polar
coordinate system. With these features we have achieved an error rate of about
21% for the classification of the urine particles into the 12 categories.
Finally, we report a result on the same dataset using a different classifier.
We trained different architectures of a convolutional neural network on raw
images [10]. We reduced the images to a common resolution of 52x52 pixels
by bilinear interpolation or sampling since the original resolution is variable.
The network giving the best performance has in the first convolutional layer
6 feature maps. This is followed by a sub-sampling layer with a vertical and
horizontal stride equal to 2. The next convolutional layer outputs 16 feature
maps which are sub-sampled by a factor of 4 in the next sampling layer. The
last convolutional layer has 120 feature maps which will be reduced to 12
(as many as the number of classes) by a 1 layer neural network. With this
system we have achieved an error rate of 16%. The network seems to overfit
the data and needs more training samples overall for the classes characterized
by a very low contrast; few thousands of samples seem to be insufficient to
properly estimate the more than 50,000 internal parameters.

14



Fig. 7. Classification of urine particles: averaged confusion matrix for experiments in
which 90% of images in the full data set are used for training and 10% are randomly
extracted for testing. The proportional error rate (ERp in parenthesis) is the average
of the error rates of each single class; the main error rate shown is the ratio between
the total number of misclassified images and the total number of tested images. We
refer also to the proportional error rate because we run experiments using a different
number of test samples for each class, namely, classes NHL and MUC have fewer
test images. In the intersection of row i with column j, we have the percentage of
items belonging to class i that have been assigned to class j. On the diagonal, we
show the percentage of correct classification of each class.

8 Summary and Conclusions

Microscopic analysis of biological particles aims to find and to classify parti-
cles. These objects often have variable shape and texture, and very low con-
trast and resolution. Moreover, the background can be highly variable as well.
Recognition on these images is very challenging.
In this work, we have defined a new kind of feature based on “local jets”
(Mohr and Schmid 1997 [4]). These are able to extract information from a
patch centered on the object of interest without any segmentation. Classifi-
cation performed with a simple mixture of Gaussians classifier has achieved
a very low error rate in considering the 12 classes of cells that are found in
urinalysis. Even though these images are characterized by very low contrast
and poor resolution, we reached an error rate equal to 6.8%. The same clas-
sifier is able to achieve an error rate of 22% on 8 species of airborne pollen
grains. This classifier outperforms the previous systems dealing with analogous
pollen images and makes feasible the development of a real-time instrument
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Fig. 8. Classification of 8 pollen categories (expert’s patches): average test confusion
matrix of 100 experiments. Every time 10% of the images are randomly extracted for
testing. The proportional error rate (average of the error rates of each single class)
is first shown; the error rate in parentheses is the ratio between the total number of
misclassified images and the total number of tested images. Since we are testing a
different number of samples for each class, we mainly refer to the proportional error
rate.

UNK alder ash elm jacaran. mulber. oak olive pine f.a.

alder

ash

elm

jacaran.

mulber.

oak

olive

pine

f.a.

TR
U

E 
C

LA
SS

ESTIMATED CLASS

av. test ER = 35.1% σ = 3.1 (abs. ER = 15.5%)

8.9 76.5 1.4 3.3 3.0 1.3 1.3 0.4 0.6 3.3

18.4 2.5 46.0 8.1 6.4 2.6 9.8 0.5 3.4 2.3

13.1 2.4 6.9 60.7 5.7 1.6 3.1 4.8 1.7

20.2 2.8 8.4 5.6 41.3 4.5 10.2 0.5 2.6 3.9

13.7 7.1 5.7 66.6 2.9 4.0

19.4 1.1 6.6 1.3 13.4 3.1 44.4 2.5 2.2 6.0

3.6 0.2 0.9 0.6 87.3 0.9 6.5

8.7 0.7 1.0 2.8 0.7 0.2 2.2 2.0 74.8 6.9

6.7 1.4 1.4 1.1 0.5 1.8 1.7 1.3 4.4 79.7

Fig. 9. Classification of 8 pollen species and false alarm class: average test confu-
sion matrix of 100 experiments in which the detector patches were used. In these
experiments, we have taken for each pollen particle 10 false alarms and we have ran-
domly extracted 10% of the images for testing. In the plot f.a. collects the patches
assigned to the false alarm class, UNK the patches having classification confidence
below threshold. A false alarm patch is correctly classified when it is assigned either
to f.a. or to UNK.
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UNK alder ash pine f.a.

alder

ash

pine

f.a.

TR
U

E 
C

LA
SS

ESTIMATED CLASS

av. test ER = 17.4% σ = 2.6 (abs. ER = 8.2%)

9.9 81.4 3.7 0.7 4.3

14.7 4.1 78.0 1.2 2.0

14.5 0.7 0.7 78.0 6.1

14.8 1.4 1.4 4.2 78.2

Fig. 10. Classification of those pollen grains that can be found in January: average
test confusion matrix of 100 experiments in which the detector patches were used.
Even if for each pollen grain we also detect 10 false alarms, most of these particles are
subsequently rejected by the classifier: 14.8+78.2=93% of these objects are correctly
classified.

for counting pollen. In this work, we did not aim to address a specific applica-
tion and we have proved by many experiments on different datasets that this
system is actually able to achieve very good performance on many different
kinds of “small” object categories found in microscopic images.
We believe that our features could be improved by considering color informa-
tion and by applying more complex non-linearities.
We have also presented a detection system based on a filtering approach. This
gives very good results on a pollen dataset because it is able to detect a pollen
grain with a probability of 9/10. For each pollen grain another 10 particles
that are not pollen are detected, though most of these extraneous corpuscles
are subsequently rejected by the classifier. Moreover, even an expert has to
focus his attention on nearly 10 points in each image to establish the presence
of one grain of pollen. This result is reliable because we have used 1429 images
with 3686 pollen grains. Improvements could be obtained by introducing other
kinds of tests to decrease the number of false alarms, by considering a more
sophisticated estimation of regions of interest, and by taking into account color
information as well.
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parameters value

8 pollen classes: expert’s patches fig. 8

dimension D 14

number components in MoG 2

covariance in MoG diagonal

8 pollen classes and false alarms

detector patches fig. 9

dimension D 14

number components in MoG (pollen) 2

covariance in MoG (pollen) spherical

number components in MoG (f.a.) 4

covariance in MoG (f.a.) full

confidence threshold 0.5

3 pollen classes and false alarms (January)

detector patches fig.10

dimension D 8

number components in MoG (pollen) 1

covariance in MoG (pollen) full

number components in MoG (f.a.) 10

covariance in MoG (f.a.) full

confidence threshold 0.7

Table 1
Pollen classification: parameters found during the tuning stage.
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