Spar se Feature Learning for Deep Belief Networks

Marc Aurelio Ranzato! Y-Lan Boureau®! Yann LeCun?
I Courant Institute of Mathematical Sciences, New York Ursitg
2 INRIA Rocquencourt
{ranzat o, yl an, yann@our ant . nyu. edu}

Abstract

Unsupervised learning algorithms aim to discover the stinechidden in the data,
and to learn representations that are more suitable astmp$stupervised machine
than the raw input. Many unsupervised methods are basedconstucting the
input from the representation, while constraining the espntation to have cer-
tain desirable properties (e.g. low dimension, sparsit), éDthers are based on
approximating density by stochastically reconstructimg input from the repre-
sentation. We describe a novel and efficient algorithm tonleparse represen-
tations, and compare it theoretically and experimentalth\& similar machine
trained probabilistically, namely a Restricted Boltzmanachine. We propose a
simple criterion to compare and select different unsuged/imachines based on
the trade-off between the reconstruction error and theinédion content of the
representation. We demonstrate this method by extractiayifes from a dataset
of handwritten numerals, and from a dataset of natural inpegehes. We show
that by stacking multiple levels of such machines and byningi sequentially,
high-order dependencies between the input observed \esiahn be captured.

1 Introduction

One of the main purposes of unsupervised learning is to pegtod representations for data, that
can be used for detection, recognition, prediction, oraligation. Good representations eliminate
irrelevant variabilities of the input data, while presayithe information that is useful for the ul-
timate task. One cause for the recent resurgence of interesisupervised learning is the ability
to producedeep feature hierarchies by stacking unsupervised modules on top of each other, as pro
posed by Hinton et al. [1], Bengio et al. [2] and our group [B, Bhe unsupervised module at one
level in the hierarchy is fed with the representation vecfmoduced by the level below. Higher-
level representations capture high-level dependencimgclea input variables, thereby improving
the ability of the system to capture underlying regulasitiethe data. The output of the last layer in
the hierarchy can be fed to a conventional supervised @issi

A natural way to design stackable unsupervised learningesys is the encoder-decoder
paradigm [5]. Anencoder transforms the input into the representation (also knowthagode

or the feature vector), anddeecoder reconstructs the input (perhaps stochastically) from ¢pea-
sentation. PCA, Auto-encoder neural nets, RestrictedzBahn Machines (RBMs), our previous
sparse energy-based model [3], and the model proposed far[bisy overcomplete channels are
just examples of this kind of architecture. The encodeddecarchitecture is attractive for two rea-
sons: 1. after training, computing the code is a very fast@se that merely consists in running the
input through the encoder; 2. reconstructing the input tithdecoder provides a way to check that
the code has captured the relevant information in the dat@eSearning algorithms [7] do not have
a decoder and must resort to computationally expensive dWatkain Monte Carlo (MCMC) sam-
pling methods in order to provide reconstructions. Otharmang algorithms [8, 9] lack an encoder,
which makes it necessary to run an expensive optimizatigordhm to find the code associated
with each new input sample. In this paper we will focus onlyeoroder-decoder architectures.

In general terms, we can view an unsupervised model as dgfindistribution over input vectors
Y through an energy functioB (Y, Z, W):

[, e PEX2W)

PY|W) = /ZP(K z|W) =] e PR 1)
whereZ is the code vectof} the trainable parameters of encoder and decoderiamdn arbitrary
positive constant. The energy function includes téenstruction error, and perhaps other terms
as well. For convenience, we will omiit” from the notation in the following. Training the machine
to model the input distribution is performed by finding theeeder and decoder parameters that
minimize a loss function equal to the negative log likelidad the training data under the model.
For a single training samplg, the loss function is

L(W)Y) = _%bg/e*ﬁE(Y,z) + %log/ e PE(y:2) @)
z Y,z

The first term is thdree energy F3(Y). Assuming that the distribution oveéf is rather peaked, it
can be simpler to approximate this distribution o¢eby its mode, which turns the marginalization
overZ into a minimization:

1 .
L'(W.Y) = (Y. 2°(V)) + 5 log [#8020 3)
Yy
where Z*(Y) is the maximum likelihood valu&*(Y) = argmin, E(Y,z), also known as the
optimal code. We can then define an energy for each input point, that measww well it is
reconstructed by the model:

Fo(Y) = E(Y,Z*(Y)) = Jim —%log / e PEX:2) 4)

The second term in equation 2 and 3 is calledltigepartition function, and can be viewed as a
penalty term for low energies. It ensures that the systerdymes low energgnly for input vectors
that have high probability in the (true) data distributiand produces higher energies for all other
input vectors [5]. The overall loss is the average of the almxer the training set.

Regardless of whether ony* or the whole distribution ovef is considered, the main difficulty
with this framework is that it can be very hard to compute thadgent of the log partition function
in equation 2 or 3 with respect to the parameiétsEfficient methods shortcut the computation by
drastically and cleverly reducing the integration domdtor instance, Restricted Boltzmann Ma-
chines (RBM) [10] approximate the gradient of the log pamtifunction in equation 2 bgampling
values ofY” whose energy will be pulled up using an MCMC technique. Byning the MCMC for

a short time, those samples are chosen in the vicinity ofrtiieihg samples, thereby ensuring that
the energy surface forms a ravine around the manifold ofrtiribhg samples. This is the basis of
the Contrastive Divergence method [10].

The role of the log partition function is merely to ensuretttiee energy surface is lower around
training samples than anywhere else. The method proposeélmainates the log partition function
from the loss, and replaces it by a term thaits the volume of the input space over which the energy
surface can take alow value. This is performed bydding a penalty term on the code rather than on
theinput. While this class of methods does not directly maximize itkelihood of the data, it can be
seen as a crude approximation of it. To understand the mgteérst note that if for each vector
Y, there exists a corresponding optimal cdfiéY") that makes the reconstruction error (or energy)
F.(Y) zero (or near zero), the model can perfectly reconstructigmyt vector. This makes the
energy surface flat and indiscriminate. On the other hand, ¢an only take a small number of
different values (low entropy code), then the enefgy(Y") can only be low in a limited number of
places (ther'’s that are reconstructed from this small numberofalues), and the energy cannot
be flat.

More generally, a convenient method through which flat epstgfaces can be avoided isliit
the maximum information content of the code. Hence minimizing the energy F..(Y") together with
the information content of the codeis a good substitute for minimizing the log partition function.

A popular way to minimize the information content in the casléo make the code sparse or low-
dimensional [5]. This technique is used in a number of unsuged learning methods, including

PCA, auto-encoders neural network, and sparse coding aef{6o 3, 8, 9]. In sparse methods,
the code is forced to have only a few non-zero units while ngoslie units are zero most of the
time. Sparse-overcomplete representations have a nurhbiegaretical and practical advantages,
as demonstrated in a number of recent studies [6, 8, 3]. licpkar, they have good robustness to
noise, and provide a good tiling of the joint space of loaatmd frequency. In addition, they are
advantageous for classifiers because classification is likehg to be easier in higher dimensional

spaces. This may explain why biology seems to like spargeseptations [11]. In our context, the
main advantage of sparsity constraints is to allow us tcaeph marginalization by a minimization,

and to free ourselves from the need to minimize the log pamtfinction explicitly.

In this paper we propose a new unsupervised learning ahgoitlled Sparse Encoding Symmetric
Machine (SESM), which is based on the encoder-decoder jganaand which is able to produce
sparse overcomplete representations efficiently withoytreeed for filter normalization [8, 12] or
code saturation [3]. As described in more details in sec.®23nve consider a loss function which
is a weighted sum of the reconstruction error and a sparsitalpy, as in many other unsupervised
learning algorithms [13, 14, 8]. Encoder and decoder arastcaimed to besymmetric, and share
a set of linear filters. Although we only consider linear fitén this paper, the method allows
the use of any differentiable function for encoder and decodVe propose an iterative on-line
learning algorithm which is closely related to those praabsy Olshausen and Field [8] and by us
previously [3]. The first step computes the optimal code bgimizing the energy for the given
input. The second step updates the parameters of the mathaweto minimize the energy.

In sec. 4, we compare SESM with RBM and PCA. Following [15], evaluate these methods by
measuring the reconstruction error for a given entropy efahde. In another set of experiments,
we train a classifier on the features extracted by the varimethods, and measure the classification
error on the MNIST dataset of handwritten numerals. Intergly, the machine achieving the best
recognition performance is the one with the best tradeatfleen RMSE and entropy. In sec. 5, we
compare the filters learned by SESM and RBM for handwrittenenals and natural image patches.
In sec.5.1.1, we describe a simple way to produce a deeff belidy stacking multiple levels of
SESM modules. The representational power of this hiereathion-linear feature extraction is
demonstrated through thumsupervised discovery of the numeral class labels in the high-level code

2 Architecture

In this section we describe a Sparse Encoding Symmetric Ma¢BESM) having a set of linear fil-
ters in both encoder and decoder. However, everything caaiy extended to any other choice of
parameterized functions as long as these are differeatéid maintain symmetry between encoder
and decoder. Let us denote withthe input defined il?"V, and withZ the code defined i/,
whereM is in general greater thaN (for overcomplete representations). Let the filters in eleco
and decoder be the columns of mathix ¢ RV*M and let the biases in the encoder and decoder
be denoted by.,,. € RM andb,.. € RV, respectively. Then, encoder and decoder compute:

fenc(y) = WTY + benca fdec(Z) = WZ(Z) + bdec (5)
where the functior is a point-wise logistic non-linearity of the form:
I(x) =1/(1 + exp(—gx)), (6)

with ¢ fixed gain. The system is characterized by an energy meastimincompatibility between
pairs of inputY” and latent codeZ, E(Y, Z) [16]. The lower the energy, the more compatible (or
likely) is the pair. We define the energy as:

E(YvZ):O‘eHZ_fenC(Y)H%"’Hy_fdec(Z)”g (7)
During training we minimize the following loss:
LW,Y) = E(Y,Z)+ash(Z)+ o |W|h
= a.l|Z - fenC(Y)H% + 1Y - fdec(Z)H% +ash(Z) + o [W]h (8)

The first term tries to make the output of the encoder as simii@ossible to the code The second
term is the mean-squared error between the ifpand the reconstruction provided by the decoder.

The third term ensures ttgparsity of the code by penalizing non zero values of code units; gt

acts independently on each code unit and it is definéd 23 = Zij\il log(1+1%(z;)), (correspond-
ing to a factorized Student-t prior distribution on the nimearly transformed code units [8] through
the logistic of equation 6). The last term is an L1 reguldiaraon the filters to suppress noise and
favor more localized filters. The loss formulated in equaiiocombines terms that characterize
also other methods. For instance, the first two terms appeauri previous model [3], but in that
work, the weights of encoder and decoder were not tied angddtemeters in the logistic were up-
dated using running averages. The second and third ternpgesent in the “decoder-only” model
proposed in [8]. The third term was used in the “encoder-omigdel of [7]. Besides the already-
mentioned advantages of using an encoder-decoder atcingewe point out another good feature
of this algorithm due to its symmetry. A common idiosyncréaysparse-overcomplete methods
using both a reconstruction and a sparsity penalty in theablyp function (second and third term in
equation 8), is the need tmrmalize the basis functions in the decoder during learning [8, 12hwi
somewhat ad-hoc technique, otherwise some of the basisdnacollapse to zero, and some blow
up to infinity. Because of the sparsity penalty and the limeaonstruction, code units become tiny
and are compensated by the filters in the decoder that grdvoutibound. Even though the overall
loss decreases, training is unsuccessful. Unfortunaihply normalizing the filters makes less
clear which objective function is minimized. Some authcasenproposed quite expensive meth-
ods to solve this issue: by making better approximationshefgosterior distribution [15], or by
using sampling techniques [17]. In this work, we proposertfbece symmetry between encoder
and decoder (through weight sharing) so as to have autosttimng of filters. Their norm cannot
possibly be large because code units, produced by the eneedtghts, would have large values as
well, producing bad reconstructions and increasing theggnghe second term in equation 7 and
8).

3 Learning Algorithm

Learning consists of determining the parameter$lin b.,,., andbg.. that minimize the loss in
equation 8. As indicated in the introduction, the energynaeigted with the sparsity constraint is
minimized with respect to the code to find the optimal code mMdwginalization over code distribu-
tion is performed. This is akin to using the loss function quation 3. However, the log partition
function term is dropped. Instead, we rely on the code sfyarenstraints to ensure that the energy
surface is not flat.

Since the second term in equation 8 couples Bothnd W andbg.., it is not straightforward to
minimize this energy with respect to both. On the other hamde Z is given, the minimization
with respect tol is a convex quadratic problem. Vice versa, if the paramétérare fixed, the
optimal codeZ* that minimizesL can be computed easily through gradient descent. This stgyge
the following iterative on-line coordinate descent leagnalgorithm:

1. for a given sampl&” and parameter setting, minimize the loss in equation 8 weitpect taZ by
gradient descent to obtain the optimal cdfie

2. clamping both the input” and the optimal cod&™ found at the previous step, dme step of
gradient descent to update the parameters.

Unlike other methods [8, 12], no column normalizationl@fis required. Also, all the parameters
are updated by gradient descent unlike in our previous winlwhere some parameters are updated
using a moving average.

After training, the system converges to a state where theddggroduces good reconstructions
from a sparse code, and the optimal code is predicted by desfiegd-forward propagation through
the encoder.

4 Comparative Coding Analysis

In the following sections, we mainly compare SESM with RBMoirder to better understand their
differences in terms of maximum likelihood approximatiand in terms of coding efficiency and
robustness.

RBM As explained in the introduction, RBMs minimize an approatian of the negative log
likelihood of the data under the model. An RBM is a binary k@stic symmetric machine defined

by an energy function of the forn® (Y, Z) = —ZTW7*Yy — b1, .Z — b} Y. Although this is not
obvious at first glance, this energy can be seen as a spes@btthe encoder-decoder architecture
that pertains to binary data vectors and code vectors [8jnifrg an RBM minimizes an approxima-
tion of the negative log likelihood loss function 2, averdgeer the training set, through a gradient
descent procedure. Instead of estimating the gradienteofotl partition function, RBM training
uses contrastive divergence [10], which takes random ssphwn over a limited regidn around

the training samples. The loss becomes:

1 1
LW,)Y) = _B 1ng e BEY2) 4 B log Z Z e~ BE(y:2) ©)

yeQ =z

Because of the RBM architecture, giveirathe components of are independent, hence the sum
over configurations of can be done independently for each componerit.oSamplingy in the
neighborhood? is performed with one, or a few alternated MCMC steps &veandZ. This means
that only the energy of points around training samples itedulp. Hence, the likelihood function
takes the right shape around the training samples, but roatssarily everywhere. However, the
code vector in an RBM is binary and noisy, and one may wondeathér this does not have the
effect of surreptitiously limiting the information contiesf the code, thereby further minimizing the
log partition function as a bonus.

SESM RBM and SESM have almost the same architecture becausedtehdve a symmetric
encoder and decoder, and a logistic non-linearity on thettipe encoder. However, RBM is trained
using (approximate) maximum likelihood, while SESM istred by simply minimizing the average
energyF.(Y) of equation 4 with an additional code sparsity term. SESNesebn the sparsity
term to prevent flat energy surfaces, while RBM relies on glieik contrastive term in the loss, an
approximation of the log partition function. Also, the codistrategy is very different because code
units are “noisy” and binary in RBM, while they are quasidniy andsparse in SESM. Features
extracted by SESM look like object parts (see next sectiwhjle features produced by RBM lack
an intuitive interpretation because they aim at modelirgiput distribution and they are used in a
distributed representation.

4.1 Experimental Comparison

In the first experiment we have trained SESM, RBM, and PCA anfitst 20000 digits in the
MNIST training dataset [18] in order to produce codes witld 26mponents. Similarly to [15] we
have collected test image codes after the logistic nontityg@xcept for PCA which is linear), and
we have measured the root mean square error (RMSE) and tioperSESM was run for different
values of the sparsity coefficieat in equation 8 (while all other parameters are left unchangesl

next section for details). The RMSE is defined{}a\#ﬁ Y — fiec(Z)||%, whereZ is theuniformly

guantized code produced by the encodeP, is the number of test samples, ands the estimated
variance of units in the inpdt. Assuming to encode the (quantized) code units indepelydzmd
with the same distribution, the lower bound on the numberitsfiequired to encode each of them
isgivenby:H, , = — ZZQ:1 537 1082 p17, Wherec; is the number of counts in theth bin, and@

is the number of quantization levels. The number of paspixel is then equal to%HC_u,. Unlike

in [15, 12], the reconstruction is done taking the quantizede in order to measure the robustness
of the code to the quantization noise. As shown in fig. 1-C, RiBMery robust to noise in the
code because it is trained by sampling. The opposite is su®€A which achieves the lowest
RMSE when using high precision codes, but the highest RMS&wsing a coarse quantization.
SESM seems to give the best trade-off between RMSE and gnfap 1-D/F compare the features
learned by SESM and RBM. Despite the similarities in the ieckure, filters look quite different
in general, revealing two different coding strategiestritiated for RBM, and sparse for SESM.

In the second experiment, we have compared these methodsdnsrof asupervised task in order to
assess which method produces the most discriminativeseptation. Since we have available also
the labels in the MNIST, we have used the codes (produceddsgtimachines trained unsupervised)
as input to thesame linear classifier. This is run for 100 epochs to minimize theaed error
between outputs and targets, and has a mild ridge regulafige 1-A/B show the result of these
experiments in addition to what can be achieved by a linesdier trained on the raw pixel data.
Note that: 1) training on features instead of raw data imesohe recognition (except for PCA

10 samples 100 samples 1000 samples 10 samples 100 samples 1000 samples
451 18 10 r

w0l : P + [> RAW: train w0l 16 +
* 9 ‘ 4 RAW: test * +
sk 14 * V¥ PCA: train ash 1
e A PCA:test s
30k L B < RBM: train 304 12
< < < ¢ RBM: test < < <
w w w B w w w
E 25t £ E 7 == SESM: train Lo £ 10 L 7
o« 4 ‘ 4 =@~ SESM: test x = ES
x x x YV x x x \ 4
[¢] o [¢] [} o o
@ 201 c 8 x 6 ‘ & 208 x 8 X 6
4 4 4 4 o 4
u w u w ri] w
151 6 15F 6
5 }
10 4 10 4
a ¢
5 2 I ‘, ¢
0 0 " ! 3 !

0 2 0 1 2 0 1 2
(A) ENTROPY (bits/pixel) ENTROPY (bits/pixel) ENTROPY (bits/pixel)

Symmetric Sparse Coding - RBM - PCA
0.45r .

/ PCA: quantization in 5 bins

V A PCA: quantization in 256 bins
0.41 <) RBM: quantization in 5 bins
‘ RBM: quantization in 256 bins
035" =©~= Sparse Coding: quantization in 5 bins
=@~ Sparse Coding: quantization in 256 bins

0.3r

2 .25+
['4

0.2

A

0 0.‘5 l .
(C) Entropy (bits/pixel)

o|717|/
£16|6]7
gl111217

4
0|0
3

o
£
g

v]
k.
J

~a (N IS

(B)

O /125 #5672

Figure 1: (A)-(B) Error rate on MNIST training (with 10, 100 and 1000 samples glass) and
test set produced by a linear classifier trained on the codeiiped by SESM, RBM, and PCA.
The entropy and RMSE refers to a quantization into 256 birlee Gomparison has been extended
also to the same classifier trained on raw pixel data (shothie@dvantage of extracting features).
The error bars refer to 1 std. dev. of the error rate for 10 sandhoices of training datasets
(same splits for all methods). The parametgrin eq. 8 takes values: 1, 0.5, 0.2, 0.1, 0.@¢E)
Comparison between SESM, RBM, and PCA when quantizing tde atto 5 and 256 bins(D)
Random selection from the 200 linear filters that were ledbeSESM ¢, = 0.2). (E) Some pairs
of original and reconstructed digit from the code producgdhe encoder in SESM (feed-forward
propagation through encoder and decod€f). Random selection of filters learned by RBKG)
Back-projection in image space of the filters learned in #mad stage of the hierarchical feature
extractor. The second stage was trained on the non lingarigformed codes produced by the first
stage machine. The back-projection has been performediy ad-of-10 code in the second stage
machine, and propagating this through the second stageleleand first stage decoder. The filters
at the second stage discover the class-prototypes (mgrardibred for visual convenience) even
though no class label was ever used during train{hlj.Feature extraction from 8x8 natural image
patches: some filters that were learned. 6

Nl BRI EWE ADES
TERERERSSE SEIEE 1SS
A T O T 0 L e P
) O

when the number of training samples is small), 2) RBM perfamoe is competitive overall when
few training samples are available, 3) the best performaaehieved by SESM for a sparsity level
which trades off RMSE for entropy (overall for large traigisets), 4) the method with the best
RMSE isnot the one with lowest error rate, 5) compared to a SESM haviegstime error rate

RBM is more costly in terms of entropy.

5 Experiments

This section describes some experiments we have done w8MSEhe coefficient. in equation 8

has always been set equal to 1, and the gain in the logistelean set equal to 7 in order to achieve
a quasi-binary coding. The parametgrhas to be set by cross-validation to a value which depends
on the level of sparsity required by the specific application

5.1 Handwritten Digits

Fig. 1-B/E shows the result of training a SESM with is equal to 0.2. Training was performed on

20000 digits scaled between 0 and 1, by settingo 0.0004 (in equation 8) with a learning rate

equal to 0.025 (decreased exponentially). Filters debecstrokes that can be combined to form a
digit. Even if the code unit activation has a very sparseidistion, reconstructions are very good

(no minimization in code space was performed).

5.1.1 Hierarchical Features

A hierarchical feature extractor can be trained layerdoel similarly to what has been proposed
in [19, 1] for training deep belief nets (DBNs). We have tedra second (higher) stage machine
on the non linearly transformed codes produced by the fostgl) stage machine described in the
previous example. We used just 20000 codes to produce ari@led representation with just 10
components. Since we aimed to find a 1-of-10 code we incretasesbarsity level (in the second
stage machine) by setting; to 1. Despite the completelynsupervised training procedure, the
feature detectors in the second stage machine look likeé pligtotypes as can be seen in fig. 1-G.
The hierarchical unsupervised feature extractor is abt@fiure higher order correlations among
the input pixel intensities, and to discover the highly dimear mapping from raw pixel data to the
class labels. Changing the random initialization can somest lead to the discover of two different
shapes of “9” without a unit encoding the “4”, for instanceevdrtheless, results are qualitatively
very similar to this one. For comparison, when training a DBhdtotypes are not recovered because
the learned code is distributed among units.

5.2 Natural Image Patches

A SESM with about the same set up was trained on a dataset 6033 natural image patches
randomly extracted from the Berkeley segmentation daf2€ét The input images were simply
scaled down to the rangé, 1.7], without even subtracting the mean. We have considered a 2
times overcomplete code with 128 units. The parametgrsy, and the learning rate were set to
0.4, 0.025, and 0.001 respectively. Some filters are loe@l@abor-like edge detectors in different
positions and orientations, other are more global, and somede the mean value (see fig. 1-H).

6 Conclusions

There are two strategies to train unsupervised machinebavihg a contrastive term in the loss
function minimized during training, 2) constraining theemal representation in such a way that
training samples can be better reconstructed than othatspioi input space. We have shown that
RBM, which falls in the first class of methods, is particiadbust to channel noise, it achieves very
low RMSE and good recognition rate. We have also proposedrel sgmmetric sparse encoding
method following the second strategy which: is particyia&fficient to train, has fast inference,
works without requiring any withening or even mean removaihf the input, can provide the best
recognition performance and trade-off between entropy@RMand can be easily extended to a
hierarchy discovering hidden structure in the data. We tpmeposed an evaluation protocol to
compare different machines which is based on RMSE, entrogyeventually, error rate when also

labels are available. Interestingly, the machine achgethe best performance in classification is the
one with the best trade-off between reconstruction errdreamiropy. A future avenue of work is to
understand the reasons for this “coincidence”, and deeperactions between these two strategies.

Acknowledgments

We wish to thank Jonathan Goodman, Geoffrey Hinton, and Ya&engio for helpful discussions. This work
was supported in part by NSF grant [1S-0535166 “toward aatetpvel object recognition”, NSF ITR-0325463
“new directions in predictive learning”, and ONR grant NQ@e07-1-0535 “integration and representation of
high dimensional data”.

References
[1] G.E.Hinton and R. R Salakhutdinov. Reducing the dimemality of data with neural networks&cience,
313(5786):504-507, 2006.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. ggdy layer-wise training of deep networks. In
NIPS, 2006.

[3] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficlearning of sparse representations with an
energy-based model. NIPS2006. MIT Press, 2006.

[4] Y. Bengio and Y. LeCun. Scaling learning algorithms tosvai. In D. DeCoste L. Bottou, O. Chapelle
and J. Weston, editorkarge-Scale Kernel Machines. MIT Press, 2007.

[5] M. Ranzato, Y. Boureau, S. Chopra, and Y. LeCun. A unifiedrgy-based framework for unsupervised
learning. InProc. Conference on Al and Statistics (Al-Sats), 2007.

[6] E. Doi, D. C.Balcan, and M. S. Lewicki. A theoretical aysik of robust coding over noisy overcomplete
channels. INIPS. MIT Press, 2006.

[7] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Engftased models for sparse overcomplete
representationslournal of Machine Learning Research, 4:1235-1260, 2003.

[8] B. A. Olshausen and D. J. Field. Sparse coding with anaoraplete basis set: a strategy employed by
v1? Mision Research, 37:3311-3325, 1997.

[9] D.D. Lee and H. S. Seung. Learning the parts of objectsdyymegative matrix factorizatioriNature,
401:788-791, 1999.

[10] G.E. Hinton. Training products of experts by minimiginontrastive divergenceNeural Computation,
14:1771-1800, 2002.

[11] P. Lennie. The cost of cortical computatidburrent biology, 13:493-497, 2003.

[12] J.F. Murray and K. Kreutz-Delgado. Learning sparseromeaplete codes for imagesthe Journal of
VLS Sgnal Processing, 45:97-110, 2008.

[13] G.E. Hinton and R.S. Zemel. Autoencoders, minimum dpson length, and helmholtz free energy.
NIPS, 1994.

[14] G.E. Hinton, P. Dayan, and M. Revow. Modeling the maldifoof images of handwritten digitd EEE
Transactions on Neural Networks, 8:65—-74, 1997.

[15] M.S. Lewicki and T.J. Sejnowski. Learning overcompletpresentationdNeural Computation, 12:337—
365, 2000.

[16] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.J.nguaA tutorial on energy-based learning. In
G. Bakir and al.., editor®Rredicting Sructured Data. MIT Press, 2006.

[17] P. Sallee and B.A. Olshausen. Learning sparse muléisoeage representations. MiPS MIT Press,
2002.

[18] http://yann.lecun.com/exdb/mnist/.

[19] G.E. Hinton, S. Osindero, and Y.-W. Teh. A fast learnaigorithm for deep belief netdNeural Compu-
tation, 18:1527-1554, 2006.

[20] http://www.cs.berkeley.edu/projects/vision/gpaug/segbench/.

n

