Efficient Learning of Sparse Representations
with an Energy-Based Model

Marc’'Aurelio Ranzato Christopher Poultney Sumit Chopra Yann LeCun
Courant Institute of Mathematical Sciences
New York University, New York, NY 10003
{ranzat o, crispy, sunm t, yann}@s. nyu. edu

Abstract

We describe a novel unsupervised method for learning spaveecomplete fea-
tures. The model uses a linear encoder, and a linear decoetmded by a spar-
sifying non-linearity that turns a code vector into a quaisiary sparse code vec-
tor. Given an input, the optimal code minimizes the distdpesveen the output
of the decoder and the input patch while being as similar asipke to the en-
coder output. Learning proceeds in a two-phase EM-likeifash(1) compute
the minimum-energy code vector, (2) adjust the paramefere@ncoder and de-
coder so as to decrease the energy. The model producese'stetdctors” when
trained on handwritten numerals, and Gabor-like filters mirained on natural
image patches. Inference and learning are very fast, iaquiio preprocessing,
and no expensive sampling. Using the proposed unsupenvistitbd to initialize
the first layer of a convolutional network, we achieved anerate slightly lower
than the best reported result on the MNIST dataset. Finafiyextension of the
method is described to learn topographical filter maps.

1 Introduction

Unsupervised learning methods are often used to produeprpoessors and feature extractors for
image analysis systems. Popular methods such as Wavetehgesition, PCA, Kernel-PCA, Non-
Negative Matrix Factorization [1], and ICA produce compagiresentations with somewhat uncor-
related (or independent) components [2]. Most methodsym®depresentations that either preserve
or reduce the dimensionality of the input. However, sevezaént works have advocated the use
of sparse-overcomplete representations for images, inhwthie dimension of the feature vector is
larger than the dimension of the input, but only a small number of ponents are non-zero for
any one image [3, 4]. Sparse-overcomplete representgi@sent several potential advantages.
Using high-dimensional representations increases teéhibod that image categories will be easily
(possibly linearly) separable. Sparse representatiampicvide a simple interpretation of the input
data in terms of a small number of “parts” by extracting thracttire hidden in the data. Further-
more, there is considerable evidence that biological misges sparse representations in early visual
areas [5, 6].

It seems reasonable to consider a representation “cohflétis possible to reconstruct the input
from it, because the information contained in the input wiauded to be preserved in the represen-
tation itself. Most unsupervised learning methods fordeaextraction are based on this principle,
and can be understood in terms ofa@ncoder module followed by alecoder module. The encoder
takes the input and computes a code vector, for example aespad overcomplete representation.
The decoder takes the code vector given by the encoder addqa® a reconstruction of the in-
put. Encoder and decoder are trained in such a way that reagotisns provided by the decoder
are as similar as possible to the actual input data, where tijpsit data have the same statistics
as the training samples. Methods such as Vector Quantizad®GA, auto-encoders [7], Restricted
Boltzmann Machines [8], and others [9] have exactly thih@ecture but with different constraints
on the code and learning algorithms, and different kindsnabeer and decoder architectures. In
other approaches, the encoding module is missing but isisalaken by a minimization in code

space which retrieves the representation [3]. Likewis&adn-causal models the decoding module
is missing and sampling techniques must be used to recohttiriinput from a code [4]. In sec. 2,
we describe aenergy-based model which has both an encoding and a decoding part. AéaTihg,
the encoder allows very fast inference because finding @septation does not require solving an
optimization problem. The decoder provides an easy waydmngruct input vectors, thus allowing
the trainer to assess directly whether the representatimacts most of the information from the
input.

Most methods find representations by minimizing an appabgtioss function during training. In
order to learn sparse representations, a term enforcimgigpia added to the loss. This term usually
penalizes those code units that are active, aiming to makdigtribution of their activities highly
peaked at zero with heavy tails [10] [4]. A drawback for thegpgroaches is that some action
might need to be taken in order to prevent the system fromyal\aativating the same few units and
collapsing all the others to zero [3]. An alternative appios to embed a sparsifying module, e.g.
a non-linearity, in the system [11]. This in general forcgtee units to have the same degree of
sparsity, but it also makes a theoretical analysis of therdlgn more complicated. In this paper, we
present a system which achieves sparsity by placing a neasiity between encoder and decoder.
Sec. 2.1 describes this module, dubbed tBmf'sifying Logistic”, which is a logistic function with
an adaptive bias that tracks the mean of its input. This m@atity is parameterized in a simple
way which allows us to control the degree of sparsity of thEesentation as well as the entropy of
each code unit.

Unfortunately, learning the parameters in encoder anddiaran not be achieved by simple back-
propagation of the gradients of the reconstruction erfarSparsifying Logistic is highly non-linear
and resets most of the gradients coming from the decoderr¢o Z&erefore, in sec. 3 we propose
to augment the loss function by considering not only the ipatars of the system but also the
code vectors as variables over which the optimization ifopered. Exploiting the fact that 1) it is
fairly easy to determine the weights in encoder and decothenwgood” codes are given, and 2)
it is straightforward to compute the optimal codes when ti@ameters in encoder and decoder are
fixed, we describe a simple iterative coordinate descemnigation to learn the parameters of the
system. The procedure can be seen as a saktefministic version of the EM algorithmin which

the code vectors play the role of hidden variables. The legralgorithm described turns out to be
particularly simple, fast and robust. No pre-processingdgiired for the input images, beyond a
simple centering and scaling of the data. In sec. 4 we rep@erenents of feature extraction on
handwritten numerals and natural image patches. When ttensyss a linear encoder and decoder
(remember that the Sparsifying Logistic is a separate n&)dthie filters resemble “object parts” for
the numerals, and localized, oriented features for therakitnage patches. Applying these features
for the classification of the digits in the MNIST dataset, vadr achieved by a small margin the
best accuracy ever reported in the literature. We conclyddbwing a hierarchical extension which
suggests the form of simple and complex cell receptive fieldd leads to a topographic layout of
the filters which is reminiscent of the topographic maps tbimarea V1 of the visual cortex.

2 The Model

The proposed model is based on three main components, as &hég. 1:

e Theencoder: A set of feed-forward filters parameterized by the rows ofrirdV, that
computes a code vector from an image patch

e The Soarsifying Logistic. A non-linear module that transforms the code vecfointo a
sparse code vectdf with components in the range, 1.

e Thedecoder: A set of reverse filters parameterized by the columns of imatfp, that
computes a reconstruction of the input image patch fromphese code vector.

Theenergy of the system is the sum of two terms:
E(X,Z,We,Wp) = Ec(X,Z,Wc)+ Ep(X,Z,Wp) 1)
The first term is theode prediction energy which measures the discrepancy between the output of
the encoder and the code vectorIn our experiments, it is defined as:
1 1
Ec(X,Z,We) = 5||Z — Enc(X, We)||? = 5\|Z ~ WeX|?)

The second term is theeconstruction energy which measures the discrepancy between the recon-
structed image patch produced by the decoder and the inggieipatchX . In our experiments, it

E(XZW,) Sparse Code Code Z

Z
P IIX-Dec(Z,WD)IIZ lag—| DECODER W | Sp. Logistic |g

4 v

| ENCCDER W_ - IIZ—EL\C(X,WC)II2 -

Input X E (XZW,)

Figure 1: Architecture of the energy-based model for leaysparse-overcomplete representations.
The input image patclX is processed by thencoder to produce an initial estimate of the code
vector. Theencoding prediction energy E~ measures the squared distance between the code vector
Z and its estimate. The code vectois passed through tigparsifying Logistic non-linearity which
produces a sparsified code vectrThedecoder reconstructs the inputimage patch from the sparse
code. Thaeconstruction energy £'p measures the squared distance between the reconstruation a
the input image patch. The optimal code vectdrfor a given patch minimizes the sum of the two
energies. The learning process finds the encoder and degadeneters that minimize the energy
for the optimal code vectors averaged over a set of trairangpes.

ol W L L

Figure 2: Toy example of sparsifying rectification produbgdhe Sparsifying Logistic for different
choices of the parametersand 5. The input is a sequence of Gaussian random variables. The
output, computed by using eq. 4, is a sequence of spikes whtsand amplitude depend on the
parameters) and 5. In particular, increasing has the effect of making the output approximately
binary, while increasing increases the firing rate of the output signal.

\‘\ 1L, ‘ Ll

is defined as:
1 _ 1 _
Ep(X,Z,Wp) = §||X — Dec(Z,Wp)||? = §||X —~WpZ||? ()

whereZ is computed by applying the Sparsifying Logistic non-lirigeto .

2.1 The Sparsifying Logistic

The Sparsifying Logistic module is a non-linear front-end to the decoder that trans$ahe code
vector into a sparse vector with positive components. Letarsider how it transforms thie-th
training sample. Let;(k) be thei-th component of the code vector aBdk) be its corresponding
output, with: € [1..m] wherem is the number of components in the code vector. The relation
between these variables is given by:

Bzi(k)
)= e

where it is assumed that € [0,1]. ¢;(k) is the weighted sum of values ef* (™) corresponding

to previous training samples with n < k. The weights in this sum are exponentially decaying as
can be seen by unrolling the recursive equation in 4. Thislimearity can be easily understood as

a weighted softmax function applied over consecutive saspl the same code unit. This produces
a sequence of positive values which, for large values ahd small values of, is characterized

by brief and punctuate activities in time. This behaviorammiscent of the spiking behavior of
neurons.n controls the sparseness of the code by determining the Hivadtthe time window over
which samples are summed up.controls the degree of “softness” of the function. Lafyealues
yield quasi-binary outputs, while smatlvalues produce more graded responses; fig. 2 shows how
these parameters affect the output when the input is a Gaussidom variable.

i€ [l.m] with (k) =neP=®) 4 (1 —n)Gi(k-1) (4)

Another view of the Sparsifying Logistic is as a logistic ftion with an adaptive bias that tracks
the average input; by dividing the right hand side of eq. 4% (*) we have:

zi(k) = 1_|_e—ﬂ(za,(k)—[%log(l;"’Ci(k—l)))}_1 , i€ [l.m] (5)

Notice how3 directly controls the gain of the logistic. Large valuestittparameter will turn the
non-linearity into a step function and will mak& k) a binary code vector.

In our experimentsg; is treated as trainable parameter and kept fixed after theitgpphase. In
this case, the Sparsifying Logistic reduces to a logisticfion with a fixed gain and a learned bias.
For largeg in the continuous-time limit, the spikes can be shown tafela homogeneous Poisson
process. In this framework, sparsity is a “temporal” préypeharacterizing each single unit in the
code, rather than a “spatial” property shared among all this in a code. Spatial sparsity usually
requires some sort of ad-hoc normalization to ensure tieatdimponents of the code that are “on”
are not always the same ones. Our solution tackles this gmoldifferently: each unit must be
sparse when encoding different samples, independently tine activities of the other components
in the code vector. Unlike other methods [10], no ad-hocalésg of the weights or code units is
necessary.

3 Learning

Learning is accomplished by minimizing the energy in eqntlidating with superscripts the indices
referring to the training samples and making explicit thpedelencies on the code vectors, we can
rewrite the energy of the system as:

P
E(We,Wp, 2',...,2") = [Ep(X',Z',Wp) + Ec(X', 2", Wc)] (6)

i=1

This is also the loss function we propose to minimize durratng. The parameters of the system,
We andWp, are found by solving the following minimization problem:

{W57 WE} = cLTng’in{VVc,Wd}Tn’inZl,...,ZPE?(I/‘/C’ Wda Z17 .. 7ZP) (7)

Itis easy to minimize this loss with respectiia- andWp when theZ* are known and, particularly
for our experiments where encoder and decoder are a seteaf ffifters, this is a convex quadratic
optimization problem. Likewise, when the parameters irslygtem are fixed it is straightforward to
minimize with respect to the code8. These observations suggest a coordinate descent ogtioniza
procedure. First, we find the optimat for a given set of filters in encoder and decoder. Then, we
update the weights in the system fixifg to the value found at the previous step. We iterate these
two steps in alternation until convergence. In our expenimeve used aon-line version of this
algorithm which can be summarized as follows:

1. propagate the input through the encoder to get a codewdfg ;;

2. minimize the loss in eq. 6, sum of reconstruction and caddiption energy, with respect
to Z by gradient descent usirdg,,;; as the initial value

3. compute the gradient of the loss with respedfiife andWWp, and perform a gradient step

where the superscripts have been dropped because we aringefe a generic training sample.
Since the code vectaf minimizes both energy terms, it not only minimizes the restnrction
energy, but is also as similar as possible to the code pestimt the encoder. After training the de-
coder settles on filters that produce low reconstructioorsifrom minimum-energy, sparsified code
vectorsZ*, while the encoder simultaneously learns filters that pteatie corresponding minimum-
energy codesZ*. In other words, the system converges to a state where minienergy code
vectors not only reconstruct the image patch but can als@&ig/eredicted by the encoder filters.
Moreover, starting the minimization ovérfrom the prediction given by the encoder allows conver-
gence in very few iterations. After the first few thousandhiray samples, the minimization over
requires just 4 iterations on average. When training is cetaph simple pass through the encoder
will produce an accurate prediction of the minimum-energgleevector. In the experiments, two
regularization terms are added to the loss in eq. 6: a “lagsai equal to thd,; norm of W and
Wp, and a “ridge” term equal to theit; norm. These have been added to encourage the filters to
localize and to suppress noise.

Notice that we could differently weight the encoding and tbeonstruction energies in the loss
function. In particular, assigning a very large weight te #mcoding energy corresponds to turning
the penalty on the encoding prediction intbamd constraint. The code vector would be assigned the
value predicted by the encoder, and the minimization woedilice to a mean square error minimiza-
tion through back-propagation as in a standard autoencaddigiortunately, this autoencoder-like

BT ENEMEF RS EYEEEEE L EICEET SO MRISSESE e
EAET NN NESEE B IREEEERNER YA e =G RS R
i S O 5 7 e 0 150 5 5) 0 0 S SR L I e S G
I 50 Y5 5 8 A R LB R
"l EHTHIAES SRS 100 = NV AESESEAT =R e

Figure 3: Results of feature extraction from 12x12 patchksrt from the Berkeley dataset, showing
the 200 filters learned by the decoder.

learning fails because Sparsifying Logistic is almost glsvhighly saturated (otherwise the repre-
sentation would not be sparse). Hence, the gradients hagagated to the encoder are likely to be
very small. This causes the direct minimization over encpaeameters to fail, but does not seem
to adversely affect the minimization over code vectors. Wensse that the large number of degrees
of freedom in code vectors (relative to the number of encpdeameters) makes the minimization
problem considerably better conditioned. In other worlds dlternated descent algorithm performs
a minimization over a much larger set of variables than @gohck-prop, and hence is less likely to
fall victim to local minima. The alternated descent overeaad parameters can be seen as a kind
of deterministic EM. It is related to gradient-descent over parameters (stdraick-prop) in the
same way that the EM algorithm is related to gradient asamhbximum likelihood estimation.

This learning algorithm is not only simple but also very fagtor example, in the experiments
of sec. 4.1 it takes less than 30 minutes on a 2GHz procesdento 200 filters from 100,000
patches of size 12x12, and after just a few minutes the fiiszsalready very similar to the final
ones. This is much more efficient and robust than what can tie\aed using other methods. For
example, in Olshausen and Field’s [10] linear generativelehainference is expensive because
minimization in code space is necessary during testing #swéraining. In Teh et al. [4], learning
is very expensive because the decoder is missing, and saptplchniques [8] must be used to
provide a reconstruction. Moreover, most methods rely eaguocessing of the input patches such
as whitening, PCA and low-pass filtering in order to improgsults and speed up convergence. In
our experiments, we need only center the data by subtraatiigbal mean and scale by a constant.

4 Experiments

In this section we present some applications of the propesedgy-based model. Two standard
data sets were used: natural image patches and handwritfiésr dAs described in sec. 2, the
encoder and decoder learn linear filters. As mentioned in3éle input images were only trivially

pre-processed.

4.1 Feature Extraction from Natural Image Patches

In the first experiment, the system was trained on 100,008 Igreel patches of size 12x12 extracted
from the Berkeley segmentation data set [12]. Pre-prongssf images consists of subtracting
the global mean pixel value (which is about 100), and diygdihe result by 125. We chose an
overcomplete factor approximately equal to 2 by repreagritie input with 200 code units The
Sparsifying Logistic parametersand 5 were equal to 0.02 and 1, respectively. The learning rate
for updatingiW was set to 0.005 and fd#, to 0.001. These are decreased progressively during
training. The coefficients of the; and L, regularization terms were about 0.001. The learning rate
for the minimization in code space was set to 0.1, and waspiiall by 0.8 every 10 iterations, for

at most 100 iterations. Some components of the sparse cogebawallowed to take continuous
values to account for the average value of a patch. For thsore during training we saturated
the running sumg to allow some units to be always active. Values(ofvere saturated ta0°.

We verified empirically that subtracting the local mean freath patch eliminates the need for this
saturation. However, saturation during training makesrigdess expensive. Training on this data
set takes less than half an hour on a 2GHz processor.

Examples of learned encoder and decoder filters are showguiref8. They are spatially localized,
and have different orientations, frequencies and scalé®y &re somewhat similar to, but more
localized than, Gabor wavelets and are reminiscent of tbeptése fields of V1 neurons. Interest-

'Overcompleteness must be evaluated by considering the numberefinitsland the effective dimension-
ality of the input as given by PCA.

4] BD+ Bﬂﬂw

Figure 4: Top: A randomly selected subset of encoder filleasred by our energy-based model
when trained on the MNIST handwritten digit dataset. Bott@mn example of reconstruction of a
digit randomly extracted from the test data set. The recoasbn is made by adding “parts”: it is
theadditive linear combination of few basis functions of the decodehwibsitive coefficients.

ingly, the encoder and decoder filter values are nearly icknip to a scale factor. After training,
inference is extremely fast, requiring only a simple mat@ctor multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwrittgts diom the MNIST data set [13],
which contains quasi-binary images of size 28x28 (784 p)xeThe model is the same as in the
previous experiment. The number of components in the codkerveras 196. While 196 is less than
the 784 inputs, the representation is still overcompleteghse the effective dimension of the digit
dataset is considerably less than 784. Pre-processingstamhsf dividing each pixel value by 255.
Parameterg and 3 in the temporal softmax were 0.01 and 1, respectively. Thergbarameters
of the system have been set to values similar to those of thequs experiment on natural image
patches. Each one of the filters, shown in the top part of figoAtains an elementary “part” of a
digit. Straight stroke detectors are present, as in thaquewexperiment, but curly strokes can also
be found. Reconstruction of most single digits can be aeltidy a linear additive combination of
a small number of filters since the output of the Sparsifyirngiktic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by ‘tgér

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagatiofd the current record for accuracy
on the MNIST dataset [14, 15]. While back-propagation predugood low-level features, it is
well known that deep networks are particularly challengmggradient-descent learning. Hinton
et al. [16] have recently shown that initializing the wemglff a deep network using unsupervised
learning before performing supervised learning with bpodpagation can significantly improve the
performance of a deep network. This section describes dasimperiment in which we used the
proposed method to initialize the first layer of a large cdutional network. We used an architecture
essentially identical theNet-5 as described in [15]. However, because our model produ@sep
features, our network had a considerably larger numberastife maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output layére iumbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network a5th50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the meimg 5,000 training samples as a
validation set. When the error on the validation set reactsaghinimum, an additional five sweeps
were performed on the training set augmented with the védidaset (unless this increased the
training loss). Then the learning was stopped, and the fimat eate on the test set was measured.
When the weights are initialized randomly, the 50-50-20Gad&Bieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [15] with the 6-16-10(etwork.

In the next experiment, the proposed sparse feature leamathod was trained on 5x5 image
patches extracted from the MNIST training set. The modeldh@@-dimensional code. The encoder
filters were used to initialize the first layer of the 50-521D net. The network was then trained in
the usual way, except that the first layer was kept fixed fofithel0 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test erate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained oorthmal MNIST set, without deskewing
nor augmenting the training set with distorted samples.

The training set was then augmented with samples obtainegldsyically distorting the original
training samples, using a method similar to [14]. The erate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reportef 4]). By initializing the first layer

with the filters obtained with the proposed method, the testeate dropped to 0.39%. While this
is the best numerical result ever reported on MNIST, it isstatistically different from [14].

HENNEE RSO IS NSNS S NI C R ENE NN FS S ENEE
dFdE s Yl eSS RSN AT SN E OO I ENESFr FEECLN= 32 =0l

Figure 5: Filters in the first convolutional layer after trisg when the network is randomly initial-
ized (top row) and when the first layer of the network is initied with the features learned by the
unsupervised energy-based model (bottom row).

Architecture Training Set Size

20K 60K 60K + Distortions
6-16-100-10 [15 - - 10.95 -1 0.60 -
5-50-100-10 [14 - - - - [0.40 -
50-50-200-1 1.01 0.89|0.70 0.60| 0.49 0.39

Table 1:Comparison of test error rates on MNIST dataset using convolutiatalankswith various training
set size: 20,000, 60,000, and 60,000 plus 550,000 elastic distorfi@nseach size, results are reported with
randomly initialized filters, and with first-layer filters initialized using the prabalgorithm (bold face).

4.4 Hierarchical Extension: Learning Topographic Maps

It has already been observed that features extracted framahamage patches resemble Gabor-like
filters, see fig. 3. It has been recently pointed out [6] thaséffilters produce codes with somewhat
uncorrelated but not independent components. In ordemptinahigher order dependencies among
code units, we propose to extend the encoder architectuadding to the linear filter bank a second
layer of units. In this hierarchical model of the encodee timits produced by the filter bank are
now laid out on a two dimensional grid and filtered according fixed weighted mean kernel. This
assigns a larger weight to the central unit and a smallertwethe units in the periphery. In
order to activate a unit at the output of the Sparsifying ktigj all the afferent unrectified units in
the first layer must agree in giving a strong positive respdnghe input patch. As a consequence
neighboring filters will exhibit similar features. Also,ghop level units will encode features that
are more translation and rotation invariase,facto modeling complex cells. Using a neighborhood
of size 3x3, toroidal boundary conditions, and computindeceectors with 400 units from 12x12
input patches from the Berkeley dataset, we have obtainedoftographic map shown in fig. 6.
Filters exhibit features that are locally similar in oriation, position, and phase. There are two
low frequency clusters and pinwheel regions similar to wikaéxperimentally found in cortical
topography.

INPUT X

0.08| 0.12 0.08
K=[012| 0.29 0.12
0.08 0.17 0.0

CODE z

[|
o
=
[|
n
&}
|
b
o
-
[|
[|
[|
i]
| |
||
[
E
E
|

Figure 6: Example of filter maps learned by the topographécanchical extension of the model.
The outline of the model is shown on the right.

5 Conclusions

An energy-based model was proposed for unsupervised hepohisparse overcomplete representa-
tions. Learning to extract sparse features from data hagcatipns in classification, compression,
denoising, inpainting, segmentation, and super-resoidtiterpolation. The model has none of the
inefficiencies and idiosyncrasies of previously propoged se-overcomplete feature learning meth-
ods. The decoder produces accurate reconstructions ofathbgs, while the encoder provides a
fast prediction of the code without the need for any paréicpreprocessing of the input images.

It seems that a non-linearity that directly sparsifies thieds considerably simpler to control than
adding a sparsity term in the loss function, which genenatyuires ad-hoc normalization proce-
dures [3].

In the current work, we used linear encoders and decodessrfgglicity, but the model authorizes
non-linear modules, as long as gradients can be computelakdpropagated through them. As
briefly presented in sec. 4.4, it is straightforward to edtéme original framework to hierarchical
architectures in encoder, and the same is possible in theldecAnother possible extension would
stack multiple instances of the system described in therpapth each system as a module in a
multi-layer structure where the sparse code produced byeatere extractor is fed to the input of a
higher-level feature extractor.

Future work will include the application of the model to \aus tasks, including facial feature extrac-
tion, image denoising, image compression, inpaintingssifecation, and invariant feature extraction
for robotics applications.

Acknowledgments

We wish to thank Sebastian Seung and Geoff Hinton for helpful discussidris work was supported in part
by the NSF under grants No. 0325463 and 0535166, and by DARPér tinel LAGR program.

References
[1] Lee, D.D. and Seung, H.S. (1999) Learning the parts of objegtsdm-negative matrix factorization.
Nature, 401:788-791.

[2] Hyvarinen, A. and Hoyer, P.O. (2001) A 2-layer sparse codimafel learns simple and complex cell
receptive fields and topography from natural images. Vision Relspgétc2413-2423.

[3] Olshausen, B.A. (2002) Sparse codes and spikes. R.P.N.BRAoOlshausen and M.S. Lewicki Eds. -
MIT press:257-272.

[4] Teh, Y.W. and Welling, M. and Osindero, S. and Hinton, G.E. (30B8ergy-based models for sparse
overcomplete representations. Journal of Machine Learning Riéselat 235-1260.

[5] Lennie, P. (2003) The cost of cortical computation. Current lojpld 3:493-497
[6] Simoncelli, E.P. (2005) Statistical modeling of photographic imagesd&mic Press 2nd ed.

[7] Hinton, G.E. and Zemel, R.S. (1994) Autoencoders, minimum rifgtgan length, and Helmholtz free
energy. Advances in Neural Information Processing Systems 6,JoWan, G. Tesauro and J. Alspector
(Eds.), Morgan Kaufmann: San Mateo, CA.

[8] Hinton, G.E. (2002) Training products of experts by minimizing castive divergence. Neural Compu-
tation, 14:1771-1800.

[9] Doi E., Balcan, D.C. and Lewicki, M.S. (2006) A theoretical arsidyof robust coding over noisy over-
complete channels. Advances in Neural Information Processingr8y<t®, MIT Press.

[10] Olshausen, B.A. and Field, D.J. (1997) Sparse coding with arcomplete basis set: a strategy employed
by V1? Vision Research, 37:3311-3325.

[11] Foldiak, P. (1990) Forming sparse representations by locahabtdian learning. Biological Cybernetics,
64:165-170.

[12] The berkeley segmentation dataset http://www.cs.berkeley.@jed(s/vision/grouping/segbench/
[13] The MNIST database of handwritten digits http://yann.lecun.com/excilst/

[14] Simard, P.Y. Steinkraus, D. and Platt, J.C. (2003) Best pracfareconvolutional neural networks. IC-
DAR

[15] LeCun, Y. Bottou, L. Bengio, Y. and Haffner, P. (1998) Gradibased learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324.

[16] Hinton, G.E., Osindero, S. and Teh, Y. (2006) A fast learnitgpidthm for deep belief nets. Neural
Computation 18, pp 1527-1554.

